【題目】如圖,在平面直角坐標系中,直線l的函數表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫半圓,交直線l于點P1,交x軸正半軸于點O2,由弦P1O2和圍成的弓形面積記為S1,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,由弦P2O3和圍成的弓形面積記為S2,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4,由弦P3O4和圍成的弓形面積記為S3;…按此做法進行下去,其中S2018的面積為__________.
科目:初中數學 來源: 題型:
【題目】如圖,已知直線AC的表達式為y=x+8,點P從點A開始沿AO向點O以1個單位/s的速度移動,點Q從點O開始沿OC向點C以2個單位/s的速度移動.如果P,Q兩點分別從點A,O同時出發(fā),經過幾秒能使△PQO的面積為8個平方單位?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有_______人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生1800人,請根據上述調查結果,估計該中學學生中對校園安全知識 達到“了解”和“基本了解”程度的總人數;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系中,A是反比例函數y=(x>0)圖象上一點,B是y軸正半軸上一點,以OA,AB為鄰邊作ABCO.若點C及BC中點D都在反比例函數y=(k<0,x<0)圖象上,則k的值為( 。
A. ﹣3B. ﹣4C. ﹣6D. ﹣8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某茶葉銷售商計劃將m罐茶葉按甲、乙兩種禮品盒包裝出售,其中甲種禮品盒每盒裝4罐,每盒售價240元;乙種禮品盒每盒裝6罐,每盒售價300元,恰好全部裝完.已知每罐茶葉的成本價為30元,設甲種禮品盒的數量為x盒,乙種禮品盒的數量為y盒.
(1)當m=120時.
①求y關于x的函數關系式.
②若120罐茶葉全部售出后的總利潤不低于3000元,則甲種禮品盒的數量至少要多少盒?
(2)若m罐茶葉全部售出后平均每罐的利潤恰好為24元,且甲、乙兩種禮品盒的數量和不超過69盒,求m的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著手機普及率的提高,有些人開始過分依賴手機,一天中使用手機時間過長而形成了“手機癮”,某校學生會為了了解本校初三年級的手機使用情況,隨機調查了部分學生的手機使用時間,將調查結果分成五類:
A、基本不用;B、平均每天使用1~2h;C、平均每天使用2~4h;D、平均每天使用4~6h;E、平均每天使用超過6h,并根據統(tǒng)計結果繪制成了如下兩幅不完整的統(tǒng)計圖.
(1)學生會一共調查了多少名學生?
(2)此次調查的學生中屬于E類的學生有 人,并補全條形統(tǒng)計圖;
(3)若一天中手機使用時間超過6h,則患有嚴重的“手機癮”,該校初三學生共有900人,請估計該校初三年級中患有嚴重的“手機癮”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,B在x軸上,四邊形OACB為平行四邊形,且
∠AOB=60°,反比例函數 (k>0)在第一象限內過點A,且與BC交于點F。當F為BC的中點,且S△AOF=12 時,OA的長為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“宜居襄陽”是我們的共同愿景,空氣質量備受人們關注.我市某空氣質量監(jiān)測站點檢測了該區(qū)域每天的空氣質量情況,統(tǒng)計了2013年1月份至4月份若干天的空氣質量情況,并繪制了如下兩幅不完整的統(tǒng)計圖.
請根據圖中信息,解答下列問題:
(1)統(tǒng)計圖共統(tǒng)計了 天的空氣質量情況;
(2)請將條形統(tǒng)計圖補充完整;空氣質量為“優(yōu)”所在扇形的圓心角度數是 ;
(3)從小源所在環(huán)保興趣小組4名同學(2名男同學,2名女同學)中,隨機選取兩名同學去該空氣質量監(jiān)測站點參觀,則恰好選到一名男同學和一名女同學的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結CD,設直線PB與直線AC交于點E.
(1)求∠BAC的度數;
(2)當點D在AB上方,且CD⊥BP時,求證:PC=AC;
(3)在點P的運動過程中
①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數;
②設⊙O的半徑為6,點E到直線l的距離為3,連結BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com