【題目】某市將開展以“走進中國數(shù)學史”為主題的知識凳賽活動,紅樹林學校對本校100名參加選拔賽的同學的成績按A,B,C,D四個等級進行統(tǒng)計,繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖:
成績等級 | 頻數(shù)(人數(shù)) | 頻率 |
A | 4 | 0.04 |
B | m | 0.51 |
C | n | |
D | ||
合計 | 100 | 1 |
(1)求m= ,n= ;
(2)在扇形統(tǒng)計圖中,求“C等級”所對應心角的度數(shù);
(3)成績等級為A的4名同學中有1名男生和3名女生,現(xiàn)從中隨機挑選2名同學代表學校參加全市比賽,請用樹狀圖法或者列表法求出恰好選中“1男1女”的概率.
【答案】(1)51,30;(2)C等級所對應扇形的圓心角度數(shù)為108°.(3)P(選中1名男生和1名女生)=.
【解析】(1)由A的人數(shù)和其所占的百分比即可求出總人數(shù),由此即可解決問題;
(2)由總人數(shù)求出C等級人數(shù),根據(jù)其占被調(diào)查人數(shù)的百分比可求出其所對應扇形的圓心角的度數(shù);
(3)列表得出所有等可能的情況數(shù),找出剛好抽到一男一女的情況數(shù),即可求出所求的概率.
(1)參加本次比賽的學生有:4÷0.04=100(人),
m=0.51×100=51(人),
D組人數(shù)=100×15%=15(人),
n=100﹣4﹣51﹣15=30(人)
故答案為51,30;
(2)B等級的學生共有:50﹣4﹣20﹣8﹣2=16(人),
∴所占的百分比為:16÷50=32%,
∴C等級所對應扇形的圓心角度數(shù)為:360°×30%=108°;
(3)列表如下:
男 | 女1 | 女2 | 女3 | |
男 | ﹣﹣﹣ | (女,男) | (女,男) | (女,男) |
女1 | (男,女) | ﹣﹣﹣ | (女,女) | (女,女) |
女2 | (男,女) | (女,女) | ﹣﹣﹣ | (女,女) |
女3 | (男,女) | (女,女) | (女,女) | ﹣﹣﹣ |
∵共有12種等可能的結果,選中1名男生和1名女生結果的有6種.
∴P(選中1名男生和1名女生)=.
科目:初中數(shù)學 來源: 題型:
【題目】若互為相反數(shù),互為倒數(shù),且的立方等于它本身.
若,求的值;
若試討論:當為有理數(shù)時,是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由;
若,且,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:折紙中的數(shù)學
問題情境:數(shù)學活動課上,老師讓同學們折疊正方形紙片ABCD進行探究活動,興趣小組的同學經(jīng)過動手操作探究,提出了如下兩個問題:
問題1:如圖(1),若點E為BC的中點,設AE將正方形紙片ABCD折疊,點B的對應點為B′,連接B′C,求證:B′C∥AE.
問題2:如圖(2),若點E,點F分別為邊BC,邊AD的中點,沿AE、CF將正方形紙片ABCD折疊,點B的對應點為B′,點D的對應點D′,D′F與AB′交于點H,B′E與CD′交于點G,求證:四邊形D′GB′H為矩形.
(1)解決問題:請你對興趣小組提出的兩個問題進行證明.
(2)拓展探究:解決完興趣小組提出的兩個問題后,實踐小組的同學們進行如下實踐操作:如圖(3),點E,點F分別為BC、AD上的點,將正方形紙片沿AE、CF折疊,使得點B落在對角線上的點B′處,點D落在對角線AC上的點D′處,AE與對角線BD的交點為M,CF與對角線BD的交點為N,分別連接MB′,B′N,D′N,D′M.他們認為四邊形MB′ND′為正方形.
實踐小組的同學們發(fā)現(xiàn)的結論是否正確?請你說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)下列已知條件,分別指出兩個圖形中的等腰三角形,并利用第一個圖證明結論。
(1)如圖①,BD平分∠ABC,DE//AB
(2) 如圖②,AD平分∠BAC , EC//AD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和。例如:和分別可以按如圖所示的方式“分裂”成2個、3個和4個連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來進行“分裂”,則“分裂”出的奇數(shù)中,最大的奇數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點表示的數(shù)為,點表示的數(shù)為,是數(shù)軸上一點,且,動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為秒.
(1)數(shù)軸上點表示的數(shù)為 ,并用含的代數(shù)式表示點所表示的數(shù)為 ;
(2)設是的中點,是的中點,點在運動過程中,線段的長度是否發(fā)生變化?若變化,請說明理由,若不變,求線段的長度;
(3)動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向左勻速運動,動點從點出發(fā),以點每秒個單位長度沿數(shù)軸向左勻速運動,若三點同時出發(fā),在運動過程中,到的距離,到距離中,是否會有這兩段距離相等的時候?若有,請求出此時的值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣5ax+c與坐標軸分別交于點A,C,E三點,其中A(﹣3,0),C(0,4),點B在x軸上,AC=BC,過點B作BD⊥x軸交拋物線于點D,點M,N分別是線段CO,BC上的動點,且CM=BN,連接MN,AM,AN.
(1)求拋物線的解析式及點D的坐標;
(2)當△CMN是直角三角形時,求點M的坐標;
(3)試求出AM+AN的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為響應黨中央號召,決定針對沿江兩種主要污染源:生活污水和沿江工廠污染物排放,分別用甲方案和乙方案進行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進行一次性治理(當年完工),從當年開始,所治理的每家工廠一年降低的Q值平均為0.3.第一年有40家工廠用乙方案治理.經(jīng)過三年治理,境內(nèi)沿江水質明顯改善.
(1)第一年40家工廠用乙方案治理一年降低的Q值為______;
(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都有增加,第三年新增的用乙方案.新治理的工廠數(shù)量是第二年新增的用乙方案新治理的工廠數(shù)量的1.5倍,第三年用乙方案治理所降低的Q值為57,設第二年新增的用乙方案新治理的工廠數(shù)量為m家,第三年新增的用乙方案新治理的工廠數(shù)量為n家.
①請列出關于m、n的方程組,并求解;
②該市生活污水用甲方案治理,第一年降低的Q值為20.5,從第二年起,每年所降低的Q值比上一年都增加a.若第三年用甲乙兩種方案治理所降低的Q值比第二年用甲乙兩種方案治理所降低的Q值大32,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com