【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點(diǎn)E、F分別在菱形的邊BC、CD上滑動(dòng),且E、F不與B、C、D重合.當(dāng)點(diǎn)E、F在BC、CD上滑動(dòng)時(shí),則△CEF的面積最大值是____.
【答案】
【解析】解:如圖,連接AC,∵四邊形ABCD為菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD為等邊三角形,∴∠4=60°,AC=AB.
在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H點(diǎn),則BH=2,∴S四邊形AECF=S△ABC=BCAH=BC=,由“垂線段最短”可知:當(dāng)正三角形AEF的邊AE與BC垂直時(shí),邊AE最短,∴△AEF的面積會(huì)隨著AE的變化而變化,且當(dāng)AE最短時(shí),正三角形AEF的面積會(huì)最小,又∵S△CEF=S四邊形AECF﹣S△AEF,則此時(shí)△CEF的面積就會(huì)最大,∴S△CEF=S四邊形AECF﹣S△AEF=﹣×× =.
故答案為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依次類(lèi)推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為,,,…, ,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知射線CB∥OA,∠C=∠OAB,
(1)求證:AB∥OC;
(2)如圖2,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.
①當(dāng)∠C=110°時(shí),求∠EOB的度數(shù).
②若平行移動(dòng)AB,那么∠OBC :∠OFC的值是否隨之發(fā)生變化?若變化,找出變
化規(guī)律;若不變,求出這個(gè)比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)的圖象與性質(zhì).小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)在函數(shù)中,自變量x的取值范圍是________.
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | m | … |
①求m的值;
②在平面直角坐標(biāo)系xOy中,描出以上表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象.
(2)結(jié)合函數(shù)圖象寫(xiě)出該函數(shù)的一條性質(zhì):________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x+8的圖象分別交x軸、y軸于A、B兩點(diǎn),過(guò)點(diǎn)A的直線交y軸正半軸于點(diǎn)M,且點(diǎn)M為線段OB的中點(diǎn).
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點(diǎn)P,使得S△ABP=S△AOB,求出點(diǎn)P的坐標(biāo).
(3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A、B、M、H為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分學(xué)生,調(diào)查每個(gè)月的零花錢(qián)消費(fèi)額,數(shù)據(jù)整理成如下的統(tǒng)計(jì)表和如圖①②所示的兩幅不完整的統(tǒng)計(jì)圖,已知圖①中A,E兩組對(duì)應(yīng)的小長(zhǎng)方形的高度之比為2:1請(qǐng)結(jié)合相關(guān)數(shù)據(jù)解答以下問(wèn)題:
(1)本次調(diào)查樣本的容量是______;
(2)補(bǔ)全頻數(shù)分布直方圖,并標(biāo)明各組的頻數(shù);
(3)若該學(xué)校有2500名學(xué)生,請(qǐng)估計(jì)月消費(fèi)零花錢(qián)不少于300元的學(xué)生的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)有A、B兩種商品,每件的進(jìn)價(jià)分別為15元、35元.商場(chǎng)銷(xiāo)售5件A商品和2件B商品,可獲得利潤(rùn)45元;銷(xiāo)售8件A商品和4件B商品,可獲得利潤(rùn)80元.
(1)求A、B兩種商品的銷(xiāo)售單價(jià);
(2)如果該商場(chǎng)計(jì)劃購(gòu)進(jìn)A、B兩種商品共80件,用于進(jìn)貨資金最多投入2 000元,但又要確保獲利至少590元,請(qǐng)問(wèn)有那幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,對(duì)角線、相交于點(diǎn).,,點(diǎn)為上一動(dòng)點(diǎn),點(diǎn)以的速度從點(diǎn)出發(fā)沿向點(diǎn)運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E為CD邊上一點(diǎn),F為BC延長(zhǎng)線上一點(diǎn),CE=CF.
(1)求證:△BCE≌△DCF;
(2)若∠BEC=60°,求∠EFD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com