如圖,在△ABC中,點E在AB上,點D在BC上,BD=BE,∠BAD=∠BCE,AD與CE相交于點F,試判斷△AFC的形狀,并說明理由.
【考點】等腰三角形的判定;全等三角形的判定與性質(zhì).
【專題】探究型.
【分析】要判斷△AFC的形狀,可通過判斷角的關系來得出結(jié)論,那么就要看∠FAC和∠FCA的關系.因為∠BAD=∠BCE,因此我們只比較∠BAC和∠BCA的關系即可.根據(jù)題中的條件:BD=BE,∠BAD=∠BCE,△BDA和△BEC又有一個公共角,因此兩三角形全等,那么AB=AC,于是∠BAC=∠BCA,由此便可推導出∠FAC=∠FCA,那么三角形AFC應該是個等腰三角形.
【解答】解:△AFC是等腰三角形.理由如下:
在△BAD與△BCE中,
∵∠B=∠B(公共角),∠BAD=∠BCE,BD=BE,
∴△BAD≌△BCE(AAS),
∴BA=BC,∠BAD=∠BCE,
∴∠BAC=∠BCA,
∴∠BAC﹣∠BAD=∠BCA﹣∠BCE,即∠FAC=∠FCA.
∴AF=CF,
∴△AFC是等腰三角形.
【點評】本題考查了全等三角形的判定與性質(zhì)及等腰三角形的判定等知識點,利用全等三角形來得出角相等是本題解題的關鍵.
科目:初中數(shù)學 來源: 題型:
問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
問題探究:不妨假設能搭成m種不同的等腰三角形,為探究m與n之間的關系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結(jié)論.
探究一:
(1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
此時,顯然能搭成一種等腰三角形.所以,當n=3時,m=1
(2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形,所以,當n=4時,m=0
(3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形,所以,當n=5時,m=1
(4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形,所以,當n=6時,m=1
綜上所述,可得表①
n | 3 | 4 | 5 | 6 |
m | 1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(仿照上述探究方法,寫出解答過程,并把結(jié)果填在表②中)
(2)分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三
角形?(只需把結(jié)果填在表②中)
n | 7 | 8 | 9 | 10 |
m |
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進行探究,…
解決問題:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(設n分別等于4k﹣1、4k、4k+1、4k+2,其中k是整數(shù),把結(jié)果填在表 ③中)
n | 4k﹣1 | 4k | 4k+1 | 4k+2 |
m |
問題應用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)
其中面積最大的等腰三角形每個腰用了__________根木棒.(只填結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,△ABC中,AB=AC,∠A=36°,BD是AC邊上的高,則∠DBC的度數(shù)是( )
A.18° B.24° C.30° D.36°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關系?試證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com