【題目】如圖,在直角坐標(biāo)系中,直線y=x+m與y=在第一象限交于點(diǎn)A,且與x軸交于點(diǎn)C,AB⊥x軸,垂足為B,且S△AOB=1.
(1)求m的值;
(2)求△ABC的面積.
【答案】(1)m=2;(2)2+.
【解析】分析:(1)、根據(jù)△AOB的面積得出m的值;(2)、根據(jù)m的值得出反比例函數(shù)和一次函數(shù),然后求出點(diǎn)A和點(diǎn)C的坐標(biāo),從而得出三角形的面積.
詳解:(1)、解:設(shè)A(x,y), ∵直線y=x+m與雙曲線y= 在第一象限交于點(diǎn)A,S△AOB=1,
∴ xy=1,即xy=m=2, ∴m=2
(2)、解:∵m=2, ∴直線方程為y=x+2, 令y=0,得x=﹣2, ∴C點(diǎn)坐標(biāo)為(﹣2,0)
聯(lián)立兩函數(shù)的方程 , 解得A點(diǎn)坐標(biāo)為(﹣1, +1),
∴BC=+1, ∴S△ABC= ×(+1)×(+1)=2+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某林場計(jì)劃購買甲、乙兩種樹苗共800株,甲種樹苗每株24元,乙種樹苗每株30元.相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%,90%.
(1)若購買這兩種樹苗共用去21000元,則甲、乙兩種樹苗各購買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購買多少株?
(3)在(2)的條件下,應(yīng)如何選購樹苗,使購買樹苗的費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年3月全國兩會(huì)政府工作報(bào)告進(jìn)一步強(qiáng)調(diào)“房子是用來住的,不是用來炒的”定位,繼續(xù)實(shí)行差別化調(diào)控。這一年被稱為史上房地產(chǎn)調(diào)控政策最密集、最嚴(yán)厲的年份。因此,房地產(chǎn)開發(fā)公司為了緩解年終資金周轉(zhuǎn)和財(cái)務(wù)報(bào)表的壓力,通常在年底大量促銷。重慶某房地產(chǎn)開發(fā)公司一方面在“高層、洋房、別墅”三種業(yè)態(tài)的地產(chǎn)產(chǎn)品中作特價(jià)活動(dòng);另一方面,公司制定了銷售刺激政策,對賣出特價(jià)的員工進(jìn)行個(gè)人獎(jiǎng)勵(lì):每賣出一套高層特價(jià)房獎(jiǎng)勵(lì)1萬元,每賣出一套洋房特價(jià)房獎(jiǎng)勵(lì)2萬元,每賣出一套別墅特價(jià)房獎(jiǎng)勵(lì)4萬元.公司將銷售人員分成三個(gè)小組,經(jīng)統(tǒng)計(jì),第一組平均每人售出6套高層特價(jià)房、4套洋房特價(jià)房、3套別墅特價(jià)房;第二組平均每人售出2套高層特價(jià)房、2套洋房特價(jià)房、1套別墅特價(jià)房;第三組平均每人售出8套高層特價(jià)房、5套洋房特價(jià)房。這三組銷售人員在此次活動(dòng)中共獲得獎(jiǎng)勵(lì)466萬元,其中通過銷售洋房特價(jià)房所獲得的獎(jiǎng)勵(lì)為216萬元,且第三組銷售人員的人數(shù)不超過20人。則第三組銷售人員的人數(shù)比第一組銷售人員的人數(shù)多___人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),CD平分∠ACB交⊙O于點(diǎn)D.
(1)AD與BD相等嗎?為什么?
(2)若AB=10,AC=6,求CD的長;
(3)若P為⊙O上異于A、B、C、D的點(diǎn),試探究PA、PD、PB之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大長方形被分割成4個(gè)標(biāo)號(hào)分別為(1)(2)(3)(4)的小正方形和5個(gè)小長方形,其中標(biāo)號(hào)為(5)的小長方形的周長為a,則大長方形的周長為( )
A.3aB.4aC.5aD.6a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點(diǎn),PE⊥BC于點(diǎn)E, PF⊥CD于點(diǎn)F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF;⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號(hào)為( )
A. ①②④⑤⑥B. ①②④⑤
C. ②④⑤D. ②④⑤⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在數(shù)軸上表示的數(shù)分別為-2與+6,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→B以每秒2個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿B→A以每秒4個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)當(dāng)Q為AB的中點(diǎn)時(shí),求線段PQ的長;
(2)當(dāng)Q為PB的中點(diǎn)時(shí),求點(diǎn)P表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過點(diǎn)E作EC⊥OA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長線于點(diǎn)D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com