【多彩數(shù)學】
如何將正方形的邊三等分和五等分
給你一張如圖1的正方形紙片,讓你用折紙的方法將其中一邊二、四等分,你會輕而易舉地用對折的方法完成.可是讓你將正方形的一邊三等分或五等分呢?我們先來三等分邊長.

(1)對折,使E為BC中點(圖2);
(2)連結DE,沿DE將DC翻折到DF位置(圖3);
(3)使點A與點F重合(圖4),那么AG=
13
AB,G為AB的三等分點.
下面請你試一試將正方形一邊長五等分的折疊方法寫出來.
分析:先根據(jù)把正方形的一邊三等分的方法對到E點,BE=
1
3
BC,沿DE將DC翻折到DF位置;使點A與點F重合,設AB=5a,則CE=
10
3
a,RF=
10
3
a,BE=
5a
3
,AG=t,則GF=t,GB=5a-t,然后利用勾股定理可計算出t=a.
解答:解:①先把正方形的一邊三等分,即點E為BC的三等分點,BE=
1
3
BC,;
②連結DE,沿DE將DC翻折到DF位置;
③使點A與點F重合,那么AG=
1
5
AB,G為AB的五等分點.如圖.
點評:本題考查了折疊的性質:翻折變換(折疊問題)實質上就是軸對稱變換;折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有小.他們該怎樣排隊才能使得總的排隊時間最短?
假設只有兩個人時,設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規(guī)律總結:
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調整這兩個人的位置,同樣介意計算兩個人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調整,從而使得總等候時間減少.這樣經(jīng)過一系列調整后,整個隊伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊時間就最短.
【方法探究】
一般的,對某些設計多個可變對象的數(shù)學問題,先對其少數(shù)對象進行調整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數(shù)學思想就叫做局部調整法.
【實踐應用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時BM+MN的最小值是
4
4

【實踐應用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構成三角形,則△PQR的最大面積是
2
2
,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【問題提出】如何把n個正方形拼接成一個大正方形?
為解決上面問題,我們先從最基本,最特殊的情形入手.對于邊長為a的兩個正方形ABCD和EFGH,如何把它們拼接成一個正方形?
【問題解決】對于邊長為a的兩個正方形ABCD和EFGH,按圖所示的方式擺放,在沿虛線BD,EG剪開后,可以按圖中所示的移動方式拼接為圖中的四邊形BNED.從拼接的過程容易得到結論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
【類比應用】
對于邊長分別為a,b(a>b)的兩個正方形ABCD和EFGH,按圖所示的方式擺放,連接DE,過點D作DM⊥DE,交AB于點M,過點M作MN⊥DM,過點E作EN⊥DE,MN與EN相交于點N.明四邊形MNED是正方形,并請你用含a,b的代數(shù)式表示正方形MNED的面積;
②如圖,將正方形ABCD和正方形EFGH沿虛線剪開后,能夠拼接為正方形MNED,請簡略說明你的拼接方法(類比如圖,用數(shù)字表示對應的圖形直接畫在圖中).
【拓廣延伸】對于n(n是大于2的自然數(shù))個任意的正方形,能否通過若干次拼接,將其拼接成為一個正方形?請簡要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

.(6分)如圖,將腰長為的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點Ay軸上,點B在拋物線yax2ax-2上,點C的坐標為(-1,0).

1.(1)點A的坐標為         ,點B的坐標為        ;

2.(2)拋物線的關系式為                      ,其頂點坐標為            ;

【小題】(3)將三角板ABC繞頂點A逆時針方向旋轉90°,到達的位置.請判斷點、是否在(2)中的拋物線上,并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年江蘇省蘇州市九年級第一學期期末考試數(shù)學卷 題型:解答題

.(6分)如圖,將腰長為的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點Ay軸上,點B在拋物線yax2ax-2上,點C的坐標為(-1,0).

1.(1)點A的坐標為         ,點B的坐標為         ;

2.(2)拋物線的關系式為                       ,其頂點坐標為             ;

【小題】(3)將三角板ABC繞頂點A逆時針方向旋轉90°,到達的位置.請判斷點、是否在(2)中的拋物線上,并說明理由.

 

查看答案和解析>>

同步練習冊答案