【題目】如圖,為等邊的高,,點P為直線上的動點(不與點B重合),連接,將線段繞點P逆時針旋轉(zhuǎn)60°,得到線段,連接、

1)問題發(fā)現(xiàn):如圖,當(dāng)點D在直線上時,線段的數(shù)量關(guān)系為_________,_________

2)拓展探究:如圖,當(dāng)點P的延長線上時,(1)中結(jié)論是否成立?若成立,請加以證明;若不成立,請說明理由;

3)問題解決:當(dāng)時,請直接寫出線段的長度.

【答案】1)相等;90°;(2)成立,證明見解析;(34

【解析】

(1)連接AD,通過SAS證明,然后對應(yīng)邊、對應(yīng)角相等、等量減等量,即可得出結(jié)論;

2)連接AD,通過SAS證明,然后對應(yīng)邊、對應(yīng)角相等、等量加等量,即可得出結(jié)論;

3)通過前兩問,我們知道是等邊三角形,點D的軌跡是AP旋轉(zhuǎn)60°得來的,A為定點,PBC上運動是主動點,D為從動點,根據(jù)瓜豆原理可以得出D的軌跡是一條直線;BM長為定值、也為定值,利用定弦定角模型可知點D還應(yīng)在圓弧上,因為點P可能在B點上方,還可能在C點下方,所以軌跡應(yīng)為兩段圓。煌ㄟ^以上分析可以作出圖形,找到兩種軌跡的交點,確定D點,求出AD即求出AP

解:(1)相等;90°;

是等邊三角形,

,

由旋轉(zhuǎn)的性質(zhì)可得:,,

是等邊三角形,

,

中,

,

,

2)成立,證明如下:

如圖,連接,

是等邊三角形,

,

由旋轉(zhuǎn)的性質(zhì)可得:,

是等邊三角形,

,

,

中,

,

,

,

3)點P在直線BC上運動,由瓜豆原理可知,D點也應(yīng)在直線上運動,在BC上選取兩個特殊的P點位置,按照題意作出對應(yīng)D點,然后連接點D所在直線確定;因為所以BM所對圓心角為60°,按照圓心在BM左側(cè)和右側(cè)兩種情況,作出點D所在兩端圓弧,直線與兩端圓弧交點,即滿足題意的點D,具體圖形如下:

AP1=AD1=4;

AP2=AD2=

綜上所述,AP長為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L1y=ax2+bx+c(a0)x軸交于A、B兩點,與y軸交于C點,且A(1,0),OB=OC=3OA.若拋物線L2與拋物線L1關(guān)于直線x=2對稱.

1)求拋物線L1與拋物線L2的解析式;

2)在拋物線L1上是否存在一點P,在拋物線L2上是否存在一點Q,使得以BC為邊,且以BC、P、Q為頂點的四邊形為平行四邊形?若存在,求出P、Q兩點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,直線y12x+4分別與x軸,y軸交于A,B兩點,以線段OB為一條邊向右側(cè)作矩形OCDB,且點D在直線y2=﹣x+b上,若矩形OCDB的面積為20,直線y12x+4與直線y2=﹣x+b交于點P.則P的坐標(biāo)為( 。

A.2,8B.C.D.4,12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的切線,點C在直徑AB的延長線上.

(1)求證:∠CAD=BDC;

(2)若BD=AD,AC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護人員支援湖北武漢抗擊疫情.

(1)若從甲、乙兩醫(yī)院支援的醫(yī)護人員中分別隨機選1名,則所選的2名醫(yī)護人員性別相同的概率是    ;

(2)若從支援的4名醫(yī)護人員中隨機選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護人員來自同一所醫(yī)院的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四張大小、形狀都相同的卡片上分別寫有數(shù)字12,34,把它們放入不透明的盒子中搖勻.

1)從中隨機抽出1張卡片,抽出的卡片上的數(shù)字恰好是偶數(shù)的概率為   

2)從中隨機抽出1張卡片,記錄數(shù)字后放回?fù)u勻,再抽出一張卡片,記錄數(shù)字.用樹狀圖或列表法求兩次抽出的卡片上的數(shù)字恰好是兩個相鄰整數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x1x2是關(guān)于x的方程2x24mx+2m2+3m+20的兩個實根,當(dāng)m_____時,x12+x22有最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在五一假期間參加一項社會調(diào)查活動,在他所居住小區(qū)的600個家庭中,隨機調(diào)查了50個家庭人均月收入情況,并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖(收入取整數(shù),單位:元).

數(shù)

10001200

3

0.060

12001400

12

0.240

14001600

18

0.360

16001800

0.200

18002000

5

20002200

2

0.040

合計

50

1.000

請你根據(jù)以上提供的信息,解答下列問題:

補全頻數(shù)分布表和頻數(shù)分布直方圖;

50個家庭人均月收入的中位數(shù)落在 小組;

請你估算該小區(qū)600個家庭中人均月收入較低(不足1400元)的家庭個數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給拋物線yaxh2ka0)定義一種變換,先作這條拋物線關(guān)于原點對稱的拋物線,再將得到的對稱拋物線向上平移mm0)個單位長度,得到新的拋物線ym,則我們稱ym為二次函數(shù)yaxh2ka0)的m階變換.若拋物線M6階變換的關(guān)系式為

1)拋物線M的函數(shù)表達式為   ;

2)若拋物線M的頂點為點A,與r軸相交的兩個交點中的左側(cè)交點為點B,則在拋物線上是否存在點P,使點P與直線AB的距離最短?若存在,請求出此時點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案