【題目】為深化義務教育課程改革,滿足學生的個性化學習需求,某校就“學生對知識拓展,體育特長、藝術特長和實踐活動四類選課意向”進行了抽樣調查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計圖中m的值,并補全條形統(tǒng)計圖;
(2)在被調查的學生中,隨機抽一人,抽到選“體育特長類”或“藝術特長類”的學生的概率是多少?
(3)已知該校有800名學生,計劃開設“實踐活動類”課程每班安排20人,問學校開設多少個“實踐活動類”課程的班級比較合理?
【答案】
(1)解:總人數(shù)=15÷25%=60(人).
A類人數(shù)=60﹣24﹣15﹣9=12(人).
∵12÷60=0.2=20%,
∴m=20.
條形統(tǒng)計圖如圖;
(2)解:抽到選“體育特長類”或“藝術特長類”的學生的概率= =
(3)解:∵800×25%=200,200÷20=10,
∴開設10個“實驗活動類”課程的班級數(shù)比較合理
【解析】(1)兩個圖要結合起來,條形統(tǒng)計圖的補全關鍵是求出所缺部分的數(shù)量,部分 百分比=總數(shù),具體量=樣本容量 相應百分比;(2)利用概率公式即可;(3)利用“樣本的百分比可以估計總體的百分比”,得出結果.
【考點精析】關于本題考查的扇形統(tǒng)計圖和條形統(tǒng)計圖,需要了解能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,P是對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接AP,EF.給出下列結論:①PD=DF;②四邊形PECF的周長為8;③△APD一定是等腰三角形;④AP=EF.其中正確結論的序號為( )
A.①②④B.①②C.①④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商人制成了一個如圖所示的轉盤,取名為“開心大轉盤”,游戲規(guī)定:參與者自由轉動轉盤,轉盤停止后,若指針指向字母“A”,則收費2元,若指針指向字母“B”,則獎勵3元;若指針指向字母“C”,則獎勵1元.一天,前來尋開心的人轉動轉盤80次,你認為該商人是盈利的可能性大還是虧損的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD 中,對角線 AC 與 BD 相交于點 O ,點 E , F 分別為 OB , OD 的中點,延長 AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當 AB 與 AC 滿足什么數(shù)量關系時,四邊形 EGCF 是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.AO交⊙O于點E,延長AO交⊙O于點D,tanD= ,
(1)求 的值.
(2)設⊙O的半徑為3,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“綠滿重慶”行動中,江北區(qū)種植了大量的小葉榕和銀杏樹,根據(jù)林業(yè)專家的分析,樹葉在進行光合作用后產(chǎn)生的分泌物能在空氣中吸附懸浮顆粒,這樣就達到了滯塵凈化空氣的作用.
(1)若某小區(qū)今年要種植銀杏樹和小葉榕共450株,且銀杏樹的數(shù)量不超過小葉榕數(shù)量的2倍,求今年該小區(qū)小葉榕至少種植多少株?
(2)已知每一片銀杏樹葉一年平均滯塵量為,一株銀杏樹去年有3500片樹葉,冬季樹葉全部掉落后,今年新長出了樹葉,且這株銀杏今年的滯塵量是去年滯塵量的1.1倍還多.已知每片小葉榕樹葉的滯塵量比銀杏樹葉多,一株小葉榕今年的樹葉總量比今年的這株銀杏要少,明年這株小葉榕樹葉將在今年的基礎上掉落,但又會新長出1000片樹葉,若今明兩年這株小葉榕共滯塵量為,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,O是BC邊的中點,點E是正方形內一動點,OE=2,連接DE,將線段DE繞點D逆時針旋轉90°得DF,連接AE,CF
(1)如圖1,求證:AE=CF;
(2)如圖2,若A,E,O三點共線,求點F到直線BC的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,ABCD中,E,F分別是AB、CD上的點,AE=CF,M、N分別是DE、BF的中點.
(1)求證:四邊形ENFM是平行四邊形.
(2)若∠ABC=2∠A,求∠A的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com