已知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3).
(Ⅰ)求這個函數(shù)的解析式;
(Ⅱ)判斷點B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(Ⅲ)當-3<x<-1時,求y的取值范圍.
【答案】分析:(1)把點A的坐標代入已知函數(shù)解析式,通過方程即可求得k的值.
(Ⅱ)只要把點B、C的坐標分別代入函數(shù)解析式,橫縱坐標坐標之積等于6時,即該點在函數(shù)圖象上;
(Ⅲ)根據(jù)反比例函數(shù)圖象的增減性解答問題.
解答:解:(Ⅰ)∵反比例函數(shù)y=(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3),
∴把點A的坐標代入解析式,得
3=,
解得,k=6,
∴這個函數(shù)的解析式為:y=

(Ⅱ)∵反比例函數(shù)解析式y(tǒng)=,
∴6=xy.
分別把點B、C的坐標代入,得
(-1)×6=-6≠6,則點B不在該函數(shù)圖象上.
3×2=6,則點C中該函數(shù)圖象上;

(Ⅲ)∵當x=-3時,y=-2,當x=-1時,y=-6,
又∵k>0,
∴當x<0時,y隨x的增大而減小,
∴當-3<x<-1時,-6<y<-2.
點評:本題考查了反比例函數(shù)圖象的性質(zhì)、待定系數(shù)法求反比例函數(shù)解析式以及反比例函數(shù)圖象上點的坐標特征.用待定系數(shù)法求反比例函數(shù)的解析式,是中學階段的重點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y=
k
x
圖象過第二象限內(nèi)的點A(-2,m)AB⊥x軸于B,Rt△AOB精英家教網(wǎng)面積為3,若直線y=ax+b經(jīng)過點A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點C(n,-
3
2
),
(1)反比例函數(shù)的解析式為
 
,m=
 
,n=
 
;
(2)求直線y=ax+b的解析式;
(3)在y軸上是否存在一點P,使△PAO為等腰三角形?若存在,請直接寫出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y=
kx
的圖象經(jīng)過點A(-2,3),求這個反比例函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y=
kx
的圖象經(jīng)過點(3,-4),則這個函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知反比例函數(shù)y1=
k
x
和二次函數(shù)y2=-x2+bx+c的圖象都過點A(-1,2)
(1)求k的值及b、c的數(shù)量關系式(用c的代數(shù)式表示b);
(2)若兩函數(shù)的圖象除公共點A外,另外還有兩個公共點B(m,1)、C(1,n),試在如圖所示的直角坐標系中畫出這兩個函數(shù)的圖象,并利用圖象回答,x為何值時,y1<y2;
(3)當c值滿足什么條件時,函數(shù)y2=-x2+bx+c在x≤-
1
2
的范圍內(nèi)隨x的增大而增大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y=
kx
(k<0)的圖象上有兩點A(x1,y1)、B(x2,y2),且有x1<x2<0,則y1和y2的大小關系是
y1<y2
y1<y2

查看答案和解析>>

同步練習冊答案