(1)如圖,PA、PB為⊙O的兩條切線(xiàn),點(diǎn)A、B分別為切點(diǎn),OP與弦AB交于點(diǎn)C.①寫(xiě)出三對(duì)全等的三角形;②選擇其中一對(duì)加以證明;
(2)一個(gè)不透明的布袋里裝有4個(gè)大小、質(zhì)地均勻的乒乓球,每個(gè)球上面分別標(biāo)有1,2,3,4.小林先從布袋中隨機(jī)抽取一個(gè)乒乓球(不放回去),再?gòu)氖O碌?個(gè)球中隨機(jī)抽取第二個(gè)乒乓球.請(qǐng)你用所學(xué)過(guò)的方法求兩次取得乒乓球的數(shù)字之積為奇數(shù)的概率.

(1)①△PAO≌△PBO,△PAC≌△PBC,△OAC≌△OBC.
②證△PAO≌△PBO:
∵PA,PB為⊙O的切線(xiàn),
∴∠OAP=∠OBP=90°,PA=PB
在Rt△PAO和Rt△PBO中
∴Rt△PAO≌Rt△PBO;

(2)

積:2 3 4 2 6 8 3 6 1 2 4 8 12

從上圖可知有12種可能結(jié)果中,兩個(gè)數(shù)字之積為奇數(shù)的只有2種,所以,P(兩個(gè)數(shù)字之積是奇數(shù))=
分析:(1)利用切線(xiàn)與圓的位置關(guān)系以及較之間的關(guān)系,便可證明.
(2)利用概率的知識(shí)即可得出.
點(diǎn)評(píng):通過(guò)考查三角形的全等使學(xué)生全面了解和掌握切線(xiàn)與圓的位置關(guān)系.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點(diǎn)A,割線(xiàn)PBC經(jīng)過(guò)圓心O,OB=PB=1,OA繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)60°到OD,則PD的長(zhǎng)為( 。
A、
7
B、
31
2
C、
5
D、2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA、PB是⊙O的切線(xiàn),切點(diǎn)分別為A、B、C是⊙O上一點(diǎn),若∠APB=40°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA、PB分別切⊙O于A(yíng)、B,AC是⊙O的直徑,過(guò)P作PM⊥BP交CB的延長(zhǎng)線(xiàn)于M
(1)求證:∠C=∠M
(2)若cos∠C=
23
,CM=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,PA,PB,DC分別切⊙O于A(yíng),B,E點(diǎn).
(1)若∠P=40°,求∠COD;
(2)若PA=10cm,求△PCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA、PB分別切⊙O于A(yíng)、B兩點(diǎn),連接AB和OP,OP交⊙O于點(diǎn)I,則I是△PAB的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案