(2006•賀州)如圖,△ABC是⊙O的內(nèi)接三角形,直徑GH⊥AB,交AC于D,GH,BC的延長線相交于E.
(1)求證:∠OAD=∠E;
(2)若OD=1,DE=3,試求⊙O的半徑;
(3)當(dāng)是什么類型的弧時,△CED的外心在△CED的外部、內(nèi)部、一邊上.(只寫結(jié)論,不用證明)

【答案】分析:(1)由于三角形CDE和AOD中已經(jīng)有一組對頂角,那么我們可通過證明它們的外角∠AOG和∠ACB相等來證∠OAD=∠E.根據(jù)垂徑定理我們不難得出弧AG=弧BG,那么根據(jù)圓周角定理我們不難得出∠AOG=∠ACB,由此可得證.
(2)我們可通過構(gòu)建與OE,OD和圓的半徑相關(guān)的相似三角形進(jìn)行求解.連接OC,那么只要證明三角形ODC和OEC相似,即可得出關(guān)于上述三條線段的比例關(guān)系,從而求出半徑,那么關(guān)鍵是正這兩個三角形相似,已知了一個公共角,我們通過等邊對等角可得出∠OAC=∠OCA,又由(1)的結(jié)果,便可得出∠OCA=∠E.由此就能證出這兩三角形相似,得出OD,OE,OC三條線段的比例關(guān)系式后即可求出OC即圓的半徑.
(3)其實(shí)就是看∠ACB的度數(shù),如果∠ACB是個鈍角(弧AGB是優(yōu)。┠敲袋c(diǎn)O在三角形外部,如果∠ACB是個銳角(弧AGB是劣。,那么點(diǎn)O在三角形內(nèi)部,如果∠ACB是個直角(弧AGB是個半圓),那么點(diǎn)O在AB上.
解答:(1)證明:連接OB,
∵GH⊥AB,

∴∠AOG=∠GOB=∠AOB.
∵∠ACB=∠AOB,
∴∠AOG=∠ACB.
∴∠AOD=∠DCE.
又∠ADO=∠CDE,
∴∠OAD=∠E.

(2)解:連接OC,則∠OAD=∠OCA,
∵∠OAD=∠E,
∴∠OCD=∠E.
∵∠DOC=∠COE,
∴△OCD∽△OEC.
=
∴OC2=OE•OD=(1+3)×1=4.
∴OC=2.
即⊙O的半徑為2.

(3)解:當(dāng)是劣弧時,△CED的外心在△CED的外部;
當(dāng)是半圓時,△CED的外心在△CED的邊上;
當(dāng)是優(yōu)弧時,△CED的外心在△CED的內(nèi)部.
點(diǎn)評:本題主要考查了三角形的外心,圓周角定理,相似三角形的判定和性質(zhì)等知識點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(08)(解析版) 題型:解答題

(2006•賀州)如圖,⊙P與x軸相切于A,與y軸相交于B(0,2),C(0,8),求經(jīng)過A,C兩點(diǎn)的直線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西賀州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•賀州)如圖,⊙P與x軸相切于A,與y軸相交于B(0,2),C(0,8),求經(jīng)過A,C兩點(diǎn)的直線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:填空題

(2006•賀州)如圖的圍棋盤放在平面直角坐標(biāo)系內(nèi),黑棋A的坐標(biāo)為(-1,2),那么白棋B的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西賀州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•賀州)如圖,在梯形ABCD中,AD∥BC,中位線EF與AC交于G,若EG-GF=4,則BC-AD=( )

A.12
B.10
C.8
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西賀州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•賀州)如圖是一個正方體的展開圖,將它折疊成正方體后,“建”字的對面是( )
A.和
B.諧
C.社
D.會

查看答案和解析>>

同步練習(xí)冊答案