【題目】已知中,,,且,,,則的長度為________.

【答案】

【解析】

BBFCDF,BGBFAD的延長線于G,則四邊形DGBF是矩形,由矩形的性質(zhì)得到BG=DF,DG=FB.由△BFC是等腰直角三角形,得到FC=BF=2

設(shè)DE=9x,則CE=7x,EF=CE-FC=7x-2,BG=DF=16x-2,DG=FB=2

RtADCRtAGB中,由AC=AB,利用勾股定理得到AD=16x-2

證明△FEB∽△DEA,根據(jù)相似三角形的對應(yīng)邊成比例可求出x的值,進而得到AD,DE的長.在RtADE中,由勾股定理即可得出結(jié)論.

如圖,過BBFCDF,BGBFAD的延長線于G,

∴四邊形DGBF是矩形,

BG=DF,DG=FB

∵∠BCD=45°,

∴△BFC是等腰直角三角形.

BC=,

FC=BF=2

設(shè)DE=9x,則CE=7x,EF=CE-FC=7x-2,BG=DF=16x-2,DG=FB=2

RtADCRtAGB中,∵AC=AB,

,

,

解得:AD=16x-2

FBAD,

∴△FEB∽△DEA

,

28x2-16x+1=0,

解得:x=x=

當(dāng)x=時,7x-20,不合題意,舍去,

x=

AD=16x-2=6,DE=9x=,

AE=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解七、八年級學(xué)生對防溺水安全知識的掌握情況,從七、八年級各隨機抽取50名學(xué)生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:

a.七年級成績頻數(shù)分布直方圖:

b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年級成績的平均數(shù)、中位數(shù)如下:

年級

平均數(shù)

中位數(shù)

76.9

m

79.2

79.5

根據(jù)以上信息,回答下列問題:

1)在這次測試中,七年級在80分以上(含80分)的有   人;

2)表中m的值為   ;

3)在這次測試中,七年級學(xué)生甲與八年級學(xué)生乙的成績都是78分,請判斷兩位學(xué)生在各自年級的排名誰更靠前,并說明理由;

4)該校七年級學(xué)生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD內(nèi)接于⊙O,∠DAB90°

)如圖1,連接BD,若⊙O的半徑為6,弧AD=AB,求AB的長;

)如圖2,連接AC,若AD5,AB3,對角線AC平分∠DAB,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面直角坐標(biāo)系

1)請在圖中用描點法畫出二次函數(shù)y=x2+2x+1的圖象;

2)計算圖象與坐標(biāo)軸的交點,頂點坐標(biāo),寫出對稱軸;

3)指出當(dāng)x≤-3時,yx的增大而增大還是yx的增大而減少;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)yax2+x1)的圖象交于點A1,a)和點B(﹣1,﹣a).

1)求直線ABy軸的交點坐標(biāo);

2)要使上述反比例函數(shù)和二次函數(shù)在某一區(qū)域都是y隨著x的增大而增大,求a應(yīng)滿足的條件以及x的取值范圍;

3)設(shè)二次函數(shù)的圖象的頂點為Q,當(dāng)Q在以AB為直徑的圓上時,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸交于點,與軸交于點,拋物線經(jīng)過、兩點并與軸的另一個交點為,且.

1)求拋物線的解析式;

2)點為直線上方對稱軸右側(cè)拋物線上一點,當(dāng)的面積為時,求點的坐標(biāo);

3)在(2)的條件下,連接,作軸于,連接、,點為線段上一點,點為線段上一點,滿足,過點軸于點,連接,當(dāng)時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,BC為O的切線,D為O上的一點,CD=CB,延長CD交BA的延長線于點E.

(1)求證:CD為O的切線;

(2)若BD的弦心距OF=1,ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定平面內(nèi)點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D-d

1如圖1,在平面直角坐標(biāo)系xOy,圖形G1為以O為圓心2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度

A10的距離跨度______________;

B- 的距離跨度____________;

C-3,-2的距離跨度____________

根據(jù)中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________

2如圖2在平面直角坐標(biāo)系xOy,圖形G2為以D-10為圓心,2為半徑的圓直線y=kx-1上存在到G2的距離跨度為2的點,k的取值范圍

3如圖3在平面直角坐標(biāo)系xOy,射線OPy=xx≥0),E是以3為半徑的圓,且圓心Ex軸上運動,若射線OP上存在點到E的距離跨度為2求出圓心E的橫坐標(biāo)xE的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京劇臉譜是京劇藝術(shù)獨特的表現(xiàn)形式,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為紅臉,另外一張卡片的正面圖案為黑臉,卡片除正面圖案不同外,其余均相同,將這三張卡片背面向上洗勻,從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖或列表的方法,求抽出的兩張卡片上的圖案都是紅臉的概率(圖案為紅臉的兩張卡片分別記為、,圖案為黑臉的卡片記為.

查看答案和解析>>

同步練習(xí)冊答案