【題目】在矩形ABCDAB4,BC10E是直線(xiàn)AD上任意一點(diǎn)不與點(diǎn)A重合),點(diǎn)A關(guān)于直線(xiàn)BE的對(duì)稱(chēng)點(diǎn)為A,AA所在直線(xiàn)與直線(xiàn)BC交于點(diǎn)F

1如圖當(dāng)點(diǎn)E在線(xiàn)段AD上時(shí),ABE ∽△DECAE的長(zhǎng);

設(shè)AExBFy,yx的函數(shù)表達(dá)式

2線(xiàn)段DA的取值范圍是

【答案】128y=;(2≤DA′≤

【解析】分析:(1)①設(shè)AE=x,再根據(jù)對(duì)應(yīng)邊成比例可得到關(guān)于x的一元二次方程,求解即可;②由,推出 ,由對(duì)應(yīng)線(xiàn)段成比例得到關(guān)于x, y的方程,變形即可;(2對(duì)稱(chēng)軸和對(duì)稱(chēng)點(diǎn)連線(xiàn)的交點(diǎn)在以線(xiàn)段AB為直徑的圓上,D最短時(shí) , 在對(duì)角線(xiàn)BD.

本題解析:

①設(shè),則,

,

,

,

②∵所在直線(xiàn)與直線(xiàn)的交點(diǎn),且關(guān)于直線(xiàn)對(duì)稱(chēng),

設(shè)交于點(diǎn),

,

又∵

,且

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,E是AD上一點(diǎn),AE=AB,過(guò)點(diǎn)E作直線(xiàn)EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.

(1)如圖1,當(dāng)EF與AB相交時(shí),若EAB=60°,求證:EG=AG+BG;

(2)如圖2,當(dāng)EF與AB相交時(shí),若∠EAB=α(0°<α<90°),請(qǐng)你直接寫(xiě)出線(xiàn)段EG、AG、BG之間的數(shù)量關(guān)系(用含α的式子表示);

(3)如圖3,當(dāng)EF與CD相交時(shí),且EAB=90°,請(qǐng)你寫(xiě)出線(xiàn)段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有A、B兩種型號(hào)的客車(chē),它們的載客量、每天的租金如表所示:

A型號(hào)客車(chē)

B型號(hào)客車(chē)

載客量(/)

45

30

租金(/)

600

450

已知某中學(xué)計(jì)劃租用AB兩種型號(hào)的客車(chē)共10輛,同時(shí)送七年級(jí)師生到沙家參加社會(huì)實(shí)踐活動(dòng),已知該中學(xué)租車(chē)的總費(fèi)用不超過(guò)5600元.

(1)求最多能租用多少輛A型號(hào)客車(chē)?

(2)若七年級(jí)的師生共有380人,請(qǐng)寫(xiě)出所有可能的租車(chē)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,我把對(duì)角線(xiàn)互相垂直的四邊形叫做“垂美四邊形”.

1)性質(zhì)探究:如圖1.已知四邊形ABCD中,ACBD,垂足為O,求證:AB2+CD2AD2+BC2

2)解決問(wèn)題:已知AB5,BC4,分別以△ABC的邊BCAB向外作等腰RtBCQ和等腰RtABP

①如圖2,當(dāng)∠ACB90°,連接PQ,求PQ

②如圖3,當(dāng)∠ACB90°,點(diǎn)MN分別是AC、AP中點(diǎn)連接MN.若MN,則SABC   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AMBN,∠A=60°.點(diǎn)P是射線(xiàn)AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BCBD分別平分∠ABP和∠PBN,分別交射線(xiàn)AM于點(diǎn)CD

1)求∠CBD的度數(shù);

2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫(xiě)出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫(xiě)出變化規(guī)律.

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使ACB=∠ABD時(shí),直接寫(xiě)出ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn))與軸交于點(diǎn),過(guò)點(diǎn)作直線(xiàn)軸,且與交于點(diǎn).

1)當(dāng),時(shí),求的長(zhǎng);

2)若,且軸,判斷四邊形的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條筆直跑道上的A,B兩處相距500米,甲從A處,乙從B處,兩人同時(shí)相向勻速而跑,直到乙到達(dá)A處時(shí)停止,且甲的速度比乙大.甲、乙到A處的距離(米)與跑動(dòng)時(shí)間(秒)的函數(shù)關(guān)系如圖14所示.

1)若點(diǎn)M的坐標(biāo)(100,0),求乙從B處跑到A處的過(guò)程中的函數(shù)解析式;

2)若兩人之間的距離不超過(guò)200米的時(shí)間持續(xù)了40秒.

①當(dāng)時(shí),兩人相距200米,請(qǐng)?jiān)趫D14中畫(huà)出P0).保留畫(huà)圖痕跡,并寫(xiě)出畫(huà)圖步驟;

②請(qǐng)判斷起跑后分鐘,兩人之間的距離能否超過(guò)420米,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是人字型金屬屋架的示意圖,該屋架由BCAC、BAAD四段金屬材料焊接而成,其中AB、CD四點(diǎn)均為焊接點(diǎn),且AB=AC,DBC的中點(diǎn),假設(shè)焊接所需的四段金屬材料已截好,并已標(biāo)出BC段的中點(diǎn)D,那么,如果焊接工身邊只有可檢驗(yàn)直角的角尺,而又為了準(zhǔn)確快速地焊接,他應(yīng)該首先選取的兩段金屬材料及焊接點(diǎn)是(  )

A.ABAD,點(diǎn)AB.ABAC,點(diǎn)B

C.ACBC, 點(diǎn)CD.ADBC,點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系中有一點(diǎn).

1)若點(diǎn)軸的距離為2時(shí),求點(diǎn)的坐標(biāo);

2)若點(diǎn)的坐標(biāo)是,當(dāng)軸時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案