【題目】云南魯?shù)?/span>6.5級(jí)地震后,空軍某部奉命赴災(zāi)區(qū)空投救災(zāi)物資,已知物資離開飛機(jī)在空中沿拋物線降落,拋物線的頂點(diǎn)在機(jī)艙艙口點(diǎn)A處(如圖所示).
(1)若物體離開A處后下落的豎直高度AB=160 m時(shí),水平距離BC=200 m,那么要使飛機(jī)在豎直高度OA=1 km的空中空投的物資恰好落在居民點(diǎn)P處,求飛機(jī)到點(diǎn)P處的水平距離OP應(yīng)為多少;
(2)根據(jù)當(dāng)時(shí)的風(fēng)力測(cè)算,空投物資離開A處的豎直距離為160 m時(shí),它到A處的水平距離將增至400 m.要使飛機(jī)在(1)中的點(diǎn)O正上方空投物資到P處,飛機(jī)離地面的高度應(yīng)為多少?
【答案】(1)飛機(jī)到P處的水平距離OP應(yīng)為500 m;(2)飛機(jī)離地面的高度應(yīng)為250 m.
【解析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)函數(shù)值,可得相應(yīng)自變量的值;
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)自變量的值,可得相應(yīng)的函數(shù)值.
(1)由題意知,拋物線的頂點(diǎn)坐標(biāo)為(0,1 000),∵AB=160 m,BC=200 m,
∴點(diǎn)C的坐標(biāo)為(200,840).
設(shè)拋物線的函數(shù)表達(dá)式為y=ax2+1 000(a≠0).
∵點(diǎn)C(200,840)在拋物線上,
∴840=a×2002+1 000,
解得a=-.
∴拋物線的函數(shù)表達(dá)式為y=-x2+1 000.
當(dāng)y=0時(shí),-x2+1 000=0,
解得x1=500,x2=-500(舍去).
∴飛機(jī)到P處的水平距離OP應(yīng)為500 m.
(2)設(shè)飛機(jī)離地面的高度為k m,拋物線的函數(shù)表達(dá)式為y=a'x2+k(a'≠0).
由題意知,點(diǎn)C'(400,k-160)在拋物線上,
∴k-160=a'×4002+k.
解得a'=-.
∴此時(shí)拋物線的函數(shù)表達(dá)式為y=-x2+k.
∵當(dāng)x=500時(shí),y=0,
∴-×5002+k=0,解得k=250.
∴飛機(jī)離地面的高度應(yīng)為250 m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是邊長(zhǎng)為的正方形薄鐵片,小明將其四角各剪去一個(gè)相同的小正方形(圖中陰影部分)后,發(fā)現(xiàn)剩余的部分能折成一個(gè)無(wú)蓋的長(zhǎng)方體盒子,圖2為盒子的示意圖(鐵片的厚度忽略不計(jì)).
(1)設(shè)剪去的小正方形的邊長(zhǎng)為,折成的長(zhǎng)方體盒子的容積為,直接寫出用只含字母的式子表示這個(gè)盒子的高為______,底面積為______,盒子的容積為______,
(2)為探究盒子的體積與剪去的小正方形的邊長(zhǎng)之間的關(guān)系,小明列表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
324 | 588 | 576 | 500 | 252 | 128 |
填空:①______,______;
②由表格中的數(shù)據(jù)觀察可知當(dāng)的值逐漸增大時(shí),的值______.(從“逐漸增大”,“逐漸減小”“先增大后減小”,“先減小后增大”中選一個(gè)進(jìn)行填空)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,階梯圖的每個(gè)臺(tái)階上都標(biāo)著一個(gè)數(shù), 從下到上的第個(gè)至第個(gè)臺(tái)階上依次標(biāo)著,且任意相鄰四個(gè)臺(tái)階上的數(shù)的和都相等.
求前個(gè)臺(tái)階上的數(shù)的和;
求第個(gè)臺(tái)階上的數(shù)x的值;
從下到上前為奇數(shù))個(gè)臺(tái)階上的數(shù)的和能否為?若能,求出的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)城市對(duì)市民開展了有關(guān)霧霾的調(diào)查問(wèn)卷,調(diào)查內(nèi)容是“你認(rèn)為哪種措施治理霧霾最有效”,有以下四個(gè)選項(xiàng):
A.綠化造林 B.汽車限行 C.拆除燃煤小鍋爐 D.使用清潔能源.
調(diào)查過(guò)程隨機(jī)抽取了部分市民進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的市民共有多少人?
(2)請(qǐng)你將統(tǒng)計(jì)圖1補(bǔ)充完整.
(3)求圖2中項(xiàng)目對(duì)應(yīng)的扇形的圓心角的度數(shù).
(4)請(qǐng)你結(jié)合自己的實(shí)際情況對(duì)有效治理霧霾提幾點(diǎn)建議.(至少寫一條)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究證明:
(1)如圖1,在△ABC中,AB=AC,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),EG⊥AB,EF⊥AC,CD⊥AB,點(diǎn)G,F(xiàn),D分別是垂足.求證:CD=EG+EF;
猜想探究:
(2)如圖2,在△ABC中,AB=AC,點(diǎn)E是BC的延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),EG⊥AB于G,EF⊥AC交AC延長(zhǎng)線于F,CD⊥AB于D,直接猜想CD、EG、EF之間的關(guān)系為 CD=EG﹣EF ;
問(wèn)題解決:
(3)如圖3,邊長(zhǎng)為10的正方形ABCD的對(duì)角線相交于點(diǎn)O、H在BD上,且BH=BC,連接CH,點(diǎn)E是CH上一點(diǎn),EF⊥BD于點(diǎn)F,EG⊥BC于點(diǎn)G,則EF+EG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)九年級(jí)甲、乙兩班商定舉行一次遠(yuǎn)足活動(dòng),、兩地相距10千米,甲班從地出發(fā)勻速步行到地,乙班從地出發(fā)勻速步行到地.兩班同時(shí)出發(fā),相向而行.設(shè)步行時(shí)間為小時(shí),甲、乙兩班離地的距離分別為千米、千米,、與的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:
(1)直接寫出、與的函數(shù)關(guān)系式;
(2)求甲、乙兩班學(xué)生出發(fā)后,幾小時(shí)相遇?相遇時(shí)乙班離地多少千米?
(3)甲、乙兩班相距4千米時(shí)所用時(shí)間是多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC和△ABD中,∠DAB=∠ABC=90°,AD=AB=CB,BD=6cm,F為線段BD上一動(dòng)點(diǎn),以每秒1cm的速度從B勻速運(yùn)動(dòng)到D,過(guò)F作直線FQ⊥AF,且FQ=AF,點(diǎn)Q在直線AF的右側(cè),設(shè)點(diǎn)F運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)△ABF為等腰三角形時(shí),t= ;
(2)當(dāng)F點(diǎn)在線段BO上時(shí),過(guò)Q點(diǎn)作QH⊥BD于點(diǎn)H,求證:△AOF≌△FHQ;
(3)當(dāng)F點(diǎn)在線段OD上運(yùn)動(dòng)的過(guò)程中,△ABQ的面積是否變化?若不變,求出它的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,禁漁期間,我漁政船在A處發(fā)現(xiàn)正北方向B處有一艘可疑船只,測(cè)得A、B兩處距離為99海里,可疑船只正沿南偏東53°方向航行.我漁政船迅速沿北偏東27°方向前去攔截,2小時(shí)后剛好在C處將可疑船只攔截.求該可疑船只航行的速度.
(參考數(shù)據(jù):sin27°≈, cos27°≈, tan27°≈, sin53°≈, cos53°≈, tan53°≈)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com