【題目】如圖,在長(zhǎng)方形ABCD中,AF⊥BD于E,AF交BC于點(diǎn)F,連接DF,下列結(jié)論:①△ABD≌△CDB;②∠BFE=∠BDC;③S△ABE=S△DEF;④AB=6,AD=8,DB=10,則AE=4.其中正確的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】C
【解析】
在長(zhǎng)方形ABCD中有AB=CD,AD=CB,BD=DB,根據(jù)SSS可證△ABD≌△CDB,①正確;根據(jù)同角的余角相等可證∠BFE=∠BDC,②正確;由同底等高的三角形面積相等可得S△ABD= S△ADF,兩邊同時(shí)減去S△ADE可得S△ABE=S△DEF,③正確;根據(jù)△ABD面積的不同求法可求出AE=4.8,④錯(cuò)誤,問(wèn)題得解.
解:在長(zhǎng)方形ABCD中,
∵AB=CD,AD=CB,BD=DB,
∴△ABD≌△CDB(SSS),故①正確;
∵AF⊥BD,
∴在Rt△BEF中,∠BFE+∠FBE=90°,
∵在Rt△ACD中,∠CBD+∠BDC=90°,
∴∠BFE=∠BDC,故②正確;
∵S△ABD=,S△ADF=,
∴S△ABD= S△ADF,
∴S△ABD-S△ADE = S△ADF-S△ADE,即S△ABE=S△DEF,故③正確;
∵AB=6,AD=8,DB=10,
∴S△ABD=,
∴,故④錯(cuò)誤,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形ABCD中,∠A=∠D=∠B=∠C=90,E是AD上的一點(diǎn),F是AB上的一點(diǎn),EF⊥EC,且EF=EC,DE=4cm.
(1)求證:AF=DE.
(2)若AD+DC=18,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中有兩點(diǎn)A(0,1),B(﹣1,0),動(dòng)點(diǎn)P在反比例函數(shù)y=的圖象上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差的絕對(duì)值最大時(shí),點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC,∠ACB=90°,AC=5,DE⊥BD,BC=BD,∠ABE=∠CBD.
(1)求證:△ABC≌△EBD
(2)延長(zhǎng)AC交DE于F點(diǎn),若BC⊥BD,CF=4,求EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所是一塊草坪已知:AD=12m,CD=9m,∠ADC=90°,AB=39m, BC=36m,求這塊草坪的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB,AC于點(diǎn)M和N,再分別以點(diǎn)M,N為圓心畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( 。
①AD是∠BAC的平分線
②∠ADC=60°
③△ABD是等腰三角形
④點(diǎn)D到直線AB的距離等于CD的長(zhǎng)度.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示運(yùn)算程序中,若開(kāi)始輸入的值為48,我們發(fā)現(xiàn)第1次輸出的結(jié)果為24,第2次輸出的結(jié)果為12,…第2017次輸出的結(jié)果為( )
A.3B.6C.4D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABF≌△CDE.
(1)若∠B=30°,∠DCF=40°,求∠EFC的度數(shù);
(2)若BD=10,EF=2,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,高AD和BE所在的直線交于點(diǎn)H,且BH=AC,則∠ABC等于( )
A. 45° B. 120° C. 45°或135° D. 45°或120°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com