【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點F,過FDEBC,交AB于點D,交AC于點E.若BD=4,DE=7,則線段EC的長為(  )

A. 3 B. 4 C. 3.5 D. 2

【答案】A

【解析】

根據(jù)ABC中,∠ABC和∠ACB的平分線相交于點F.求證∠DBF=FBC,ECF=BCF,再利用兩直線平行內(nèi)錯角相等,求證出∠DFB=DBF,CFE=BCF,即BD=DF,F(xiàn)E=CE,然后利用等量代換即可求出線段CE的長.

∵∠ABC和∠ACB的平分線相交于點F,

∴∠DBF=FBC,ECF=BCF,

DFBC,交AB于點D,交AC于點E.

∴∠DFB=DBF,CFE=BCF,

BD=DF=4,F(xiàn)E=CE,

CE=DE-DF=7-4=3.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀對人成長的影響是巨大的,一本好書往往能改變?nèi)说囊簧鐖D是某校三個年級學(xué)生人數(shù)分布的扇形統(tǒng)計圖,其中八年級學(xué)生人數(shù)為408人,下表是該校學(xué)生閱讀課外書籍情況統(tǒng)計表.根據(jù)圖表中的信息,可知該校學(xué)生平均每人讀課外書的本數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系 中,已知點 , .若平移點 到點 ,使以點 , 為頂點的四邊形是菱形,則正確的平移方法是( )

A.向左平移1個單位,再向下平移1個單位
B.向左平移 個單位,再向上平移1個單位
C.向右平移 個單位,再向上平移1個單位
D.向右平移1個單位,再向上平移1個單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點A′和A,B′和B分別對應(yīng)).若AB=1,反比例函數(shù)y= (k≠0)的圖象恰好經(jīng)過點A′,B,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,線段AMBC邊上的中線.動點D在直線AM上時,以CD為一邊在CD的下方作等邊CDE,連結(jié)BE

(1)求∠CAM的度數(shù);

(2)若點D在線段AM上時,求證:ADCBEC

(3)當動D直線AM上時,設(shè)直線BE與直線AM的交點為O,試判斷AOB是否為定值?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著社會的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時尚.健身達人小陳為了了解他的好友的運動情況.隨機抽取了部分好友進行調(diào)查,把他們61日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計結(jié)果如圖所示:

請依據(jù)統(tǒng)計結(jié)果回答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   位好友.

(2)已知A類好友人數(shù)是D類好友人數(shù)的5倍.

①請補全條形圖;

②扇形圖中,“A”對應(yīng)扇形的圓心角為   度.

③若小陳微信朋友圈共有好友150人,請根據(jù)調(diào)查數(shù)據(jù)估計大約有多少位好友61日這天行走的步數(shù)超過10000步?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離ykm)與乙車行駛時間xh)之間的函數(shù)關(guān)系如圖所示.下列說法:乙車的速度是120km/h;②m=160;③H的坐標是(7,80);④n=7.5.其中說法正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題12分)如圖1,在平面直角坐標系中,四邊形OABC各頂點的坐標分別O(0,0),A(3, ),B(9,5 ),C(14,0).動點P與Q同時從O點出發(fā),運動時間為t秒,點P沿OC方向以1單位長度/秒的速度向點C運動,點Q沿折線OAABBC運動,在OA,AB,BC上運動的速度分別為3, , (單位長度/秒)﹒當P,Q中的一點到達C點時,兩點同時停止運動.

(1)求AB所在直線的函數(shù)表達式.
(2)如圖2,當點Q在AB上運動時,求△CPQ的面積S關(guān)于t的函數(shù)表達式及S的最大值.
(3)在P,Q的運動過程中,若線段PQ的垂直平分線經(jīng)過四邊形OABC的頂點,求相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩條射線OM∥CN,動線段AB的兩個端點A、B分別在射線OM、CN上,且∠C=∠OAB=108°,F(xiàn)在線段CB上,OB平分∠AOF,OE平分∠COF.

(1)請在圖中找出與∠AOC相等的角,并說明理由;

(2)若平行移動AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個比值;

(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=2∠OBA?若存在,請求出∠OBA度數(shù);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案