【題目】如圖,在⊙O中,直徑AB交弦CD于點(diǎn)G,CG=DG,⊙O的切線(xiàn)BE交DO的延長(zhǎng)線(xiàn)于點(diǎn)E,F(xiàn)是DE與⊙O的交點(diǎn),連接BD,BF.
(1)求證:∠CDE=∠E;
(2)若OD=4,EF=1,求CD的長(zhǎng).
【答案】證明:(1)∵在⊙O中,直徑AB交弦CD于點(diǎn)G,CG=DG,
∴AB⊥CD,
∵BE是⊙O的切線(xiàn),
∴AB⊥BE,
∴CD∥BE,
∴∠CDE=∠E;
(2)解:∵∠CDE=∠E,∠DOG=∠BOE,
∴△ODG∽△OEB,
∴,
∵OD=4,EF=1,
∴OB=OF=OD=4,
∴OE=OF+EF=5,
∴,
∴OG=,
∴DG==,
∴CD=2DG=.
【解析】(1)由在⊙O中,直徑AB交弦CD于點(diǎn)G,CG=DG,根據(jù)垂徑定理即可得AB⊥CD,又由BE是⊙O的切線(xiàn),易證得CD∥BE,即可證得結(jié)論;
(2)易證得△ODG∽△OEB,然后由相似三角形的對(duì)應(yīng)邊成比例,求得OG的長(zhǎng),由勾股定理即可求得DG的長(zhǎng),繼而求得答案.
【考點(diǎn)精析】本題主要考查了切線(xiàn)的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握切線(xiàn)的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)2、經(jīng)過(guò)切點(diǎn)垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心3、圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是若干個(gè)粗細(xì)均勻的鐵環(huán)最大限度的拉伸組成的鏈條,已知鐵環(huán)粗0.5厘米,每個(gè)鐵環(huán)長(zhǎng)4.6厘米,設(shè)鐵環(huán)間處于最大限度的拉伸狀態(tài)
(1)填表:
鐵環(huán)個(gè)數(shù) | 1 | 2 | 3 | 4 |
鏈條長(zhǎng)(cm) | 4.6 | 8.2 | _____ | ____ |
(2)設(shè)n個(gè)鐵環(huán)長(zhǎng)為y厘米,請(qǐng)用含n的式子表示y;
(3)若要組成2.17米長(zhǎng)的鏈條,至少需要多少個(gè)鐵環(huán)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三角形ABC中,點(diǎn)D在線(xiàn)段AB上,DE∥BC交AC于點(diǎn)E,點(diǎn)F在直線(xiàn)BC上,作直線(xiàn)EF,過(guò)點(diǎn)D作直線(xiàn)DH∥AC交直線(xiàn)EF于點(diǎn)H.
(1)在如圖1所示的情況下,求證:∠HDE=∠C;
(2)若三角形ABC不變,D,E兩點(diǎn)的位置也不變,點(diǎn)F在直線(xiàn)BC上運(yùn)動(dòng).
①當(dāng)點(diǎn)H在三角形ABC內(nèi)部時(shí),直接寫(xiě)出∠DHF與∠FEC的數(shù)量關(guān)系;
②當(dāng)點(diǎn)H在三角形ABC外部時(shí),①中結(jié)論是否依然成立?請(qǐng)?jiān)趫D2中畫(huà)圖探究,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線(xiàn)與線(xiàn)段AB的中垂線(xiàn)交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠AOF的度數(shù)是( )
A.105° B.110° C.115° D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角△ABC中,邊BC長(zhǎng)為3,高AH長(zhǎng)為2,矩形EFMN的邊MN在BC邊上,其余兩個(gè)頂點(diǎn)E,F(xiàn)分別在A(yíng)B,AC邊上,EF交AH于點(diǎn)G.
(1)求的值;
(2)當(dāng)EN為何值時(shí),矩形EFMN的面積為△ABC面積的四分之一.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△CDE的頂點(diǎn)C點(diǎn)坐標(biāo)為C(1,﹣2),點(diǎn)D的橫坐標(biāo)為 , 將△CDE繞點(diǎn)C旋轉(zhuǎn)到△CBO,點(diǎn)D的對(duì)應(yīng)點(diǎn)B在x軸的另一個(gè)交點(diǎn)為點(diǎn)A.
(1)圖中,∠OCE等于多少;
(2)求拋物線(xiàn)的解析式;
(3)拋物線(xiàn)上是否存在點(diǎn)P,使S△PAE=S△CDE?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB∥CD,EF分別交AB、CD于G、F兩點(diǎn),射線(xiàn)FM平分∠EFD,將射線(xiàn)FM平移,使得端點(diǎn)F與點(diǎn)G重合且得到射線(xiàn)GN.若∠EFC=110°,則∠AGN的度數(shù)是( )
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△BAD中,AC與BD相交于點(diǎn)E,已知AD=BC,另外只能從下面給出的三個(gè)條件:①∠DAB=∠CBA;②∠D=∠C;③∠DBA=∠CAB中選擇其中的一個(gè)用來(lái)證明△ABC和△BAD全等,這個(gè)條件是 (填序號(hào)),并證明△ABC≌△BAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O與正方形ABCD的兩邊AB、AD相切,且DE與⊙O相切于E點(diǎn).若正方形ABCD的周長(zhǎng)為44,且DE=6,則sin∠ODE=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com