【題目】 如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊OA在x軸上,

OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點(diǎn)O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點(diǎn)B′的坐標(biāo)是【 】

A.(2,3) B.(2,-3) C.(3,2)或(-2,3) D.(2,3)或(2,3)

【答案】D。

解析如果兩個(gè)圖形不僅是相似圖形,而且每組對應(yīng)點(diǎn)的連線交于一點(diǎn),對應(yīng)邊互相平行或在一

條直線上,那么這兩個(gè)圖形叫做位似圖形。把一個(gè)圖形變換成與之位似的圖形是位似變換。因此,

矩形OA′B′C′與矩形OABC關(guān)于點(diǎn)O位似,矩形OA′B′C′矩形OABC。

矩形OA′B′C′的面積等于矩形OABC面積的,位似比為:

點(diǎn)B的坐標(biāo)為(-4,6),點(diǎn)B′的坐標(biāo)是:(-2,3)或(2,-3)。故選D。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀材料)“九宮圖”源于我國古代夏禹時(shí)期的“洛書”1所示,是世界上最早的矩陣,又稱“幻方”,用今天的數(shù)學(xué)符號翻譯出來,“洛書”就是一個(gè)三階“幻方”2所示

(規(guī)律總結(jié))觀察圖1、圖2,根據(jù)“九宮圖”中各數(shù)字之間的關(guān)系,我們可以總結(jié)出“幻方”需要滿足的條件是______;若圖3,是一個(gè)“幻方”,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,點(diǎn)OBC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)DBC的平行線與AC的延長線相交于點(diǎn)P.

(1)求證:PD是⊙O的切線;

(2)求證:△ABD∽△DCP;

(3)當(dāng)AB=5cm,AC=12cm時(shí),求線段PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為F,連接DF,則下列四個(gè)結(jié)論中,錯(cuò)誤的是(

A. AEFCABB. CF=2AFC. DF=DCD. tanCAD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價(jià)格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克 元;

(2)求、與x的函數(shù)表達(dá)式;

(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費(fèi)用較少時(shí),草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,自卸車車廂的一個(gè)側(cè)面是矩形ABCD,AB3米,BC0.5米,車廂底部距離地面1.2米.卸貨時(shí),車廂傾斜的角度θ60°,問此時(shí)車廂的最高點(diǎn)A距離地面多少米?(精確到1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

(1)6x2﹣x﹣12=0(用配方法)

(2)(x+4)2=5(x+4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,E是邊BC上的點(diǎn),將線段DE繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到EF,過點(diǎn)CCGEFBA(或其延長線)于點(diǎn)G,連接DF,FG

1FGCE的數(shù)量關(guān)系是 ,位置關(guān)系是

2)如圖2,若點(diǎn)ECB延長線上的點(diǎn),其它條件不變.

1)中的結(jié)論是否仍然成立?請作出判斷,并給予證明;

DEDF分別交BG于點(diǎn)M,N,若BC2BE,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB在平面直角坐標(biāo)系中,已知:B0,),點(diǎn)Ax軸的正半軸上,OA=3,∠BAD=30°,將△AOB沿AB翻折,點(diǎn)O到點(diǎn)C的位置,連接CB并延長交x軸于點(diǎn)D

1)求點(diǎn)D的坐標(biāo);

2)動(dòng)點(diǎn)P從點(diǎn)D出發(fā),以每秒2個(gè)單位的速度沿x軸的正方向運(yùn)動(dòng),當(dāng)△PAB為直角三角形時(shí),求t的值;

3)在(2)的條件下,當(dāng)△PAB為以∠PBA為直角的直角三角形時(shí),在y軸上是否存在一點(diǎn)Q使△PBQ為等腰三角形?如果存在,請直接寫出Q點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案