如11圖,在平行四邊形ABCD中,過(guò)點(diǎn)B作BE⊥CD,垂足為E,連結(jié)AE,F(xiàn)為AE上一點(diǎn),且∠BFE=∠C
(1)      求證:△ABF∽△EAD
(2)      若AB=4,S   ABCD=,求AE的長(zhǎng)
(3)      在(1)、(2)條件下,若AD=3,求BF的長(zhǎng)(計(jì)算結(jié)果可含根號(hào))

證明:(1)∵四邊形ABCD
為平行四邊形,∴∠BAF=∠AED
∠C+∠D=180°,∴∠C=∠BFE,∠BFE+∠BFA=180°,∴∠D=∠BFA
∴△ABF∽△EAD
(2)解:∵S  ABCD=,∴AB·BE=,∵AB=4
∴BE= ∴AE2=AB2+BE2=42+(2  AE=
(3)解:由(1)有=,又AD=3,∴BF==4×3×=

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:013

(2006南京課改,11)如圖,在平面直角坐標(biāo)系中,平行四邊行ABCD的頂點(diǎn)A、BD的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點(diǎn)C的坐標(biāo)是

[  ]

A.(3,7)
B.(5,3)
C.(7,3)
D.(8,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案