【題目】如圖,已知函數(shù)的圖象為直線,函數(shù)的圖象為直線,直線、分別交軸于點和點,分別交軸于點相交于點

(1)填空:  ;求直線的解析式為

(2)若點軸上一點,連接,當(dāng)的面積是面積的2倍時,請求出符合條件的點的坐標(biāo);

(3)若函數(shù)的圖象是直線,且、不能圍成三角形,直接寫出的值.

【答案】1,直線的解析式為;(2點的坐標(biāo)為;(3的值為

【解析】

1)將點坐標(biāo)代入中,即可得出結(jié)論;將點,坐標(biāo)代入中,即可得出結(jié)論;

2)先利用兩三角形面積關(guān)系判斷出,再分兩種情況,即可得出結(jié)論;

3)分三種情況,利用兩直線平行,相等或經(jīng)過點討論即可得出結(jié)論.

解:(1在函數(shù)的圖象上,

,

,

直線過點、,

可得方程組為,

解得

直線的解析式為;

故答案為:

2軸的交點,當(dāng)時,,

,坐標(biāo)為,

的面積是面積的2倍,

第一種情況,當(dāng)在線段上時,

,即

,

坐標(biāo),

第二種情況,當(dāng)在射線上時,

,

,

坐標(biāo),

點的坐標(biāo)為

3、不能圍成三角形,

直線經(jīng)過點,

直線的解析式為

代入到解析式中得:

,

②當(dāng)時,

∵直線的解析式為

,

③當(dāng)時,

∵直線的解析式為,

,

的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

如圖,拋物線y=x2x4x軸交與A,B兩點(點B在點A的右側(cè)),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點Px軸上的一個動點,設(shè)點P的坐標(biāo)為(m0),過點Px軸的垂線l交拋物線于點Q

1)求點AB,C的坐標(biāo).

2)當(dāng)點P在線段OB上運動時,直線l分別交BD,BC于點M,N.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.

3)當(dāng)點P在線段EB上運動時,是否存在點Q,使BDQ為直角三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光明中學(xué)七年級1班同學(xué)積極響應(yīng)陽光體育工程的號召,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從長跑、籃球、鉛球、立定跳遠(yuǎn)中選一項進行訓(xùn)練,訓(xùn)練前后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖表.

項目選擇情況統(tǒng)計圖訓(xùn)練后籃球定時定點投籃測試進球數(shù)統(tǒng)計表

進球數(shù)(個

8

7

6

5

4

3

人數(shù)

2

1

4

7

8

2

請你根據(jù)圖表中的信息回答下列問題:

(1)選擇長跑訓(xùn)練的人數(shù)占全班人數(shù)的百分比是_____%,該班共有同學(xué)_____人;

(2)求訓(xùn)練后籃球定時定點投籃人均進球數(shù);

(3)根據(jù)測試資料,訓(xùn)練后籃球定時定點投籃的人均進球數(shù)比訓(xùn)練之前人均進球數(shù)增加25%.請求出參加訓(xùn)練之前的人均進球數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點A、B的坐標(biāo)分別為(6,0),(6,8).動點M、N分別從O、B同時出發(fā),以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點N作NPBC,交AC于P,連接MP.已知動點運動了x秒.

(1)P點的坐標(biāo)為多少;(用含x的代數(shù)式表示)

(2)試求MPA面積的最大值,并求此時x的值;

(3)請你探索:當(dāng)x為何值時,MPA是一個等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,點從點出發(fā)向點運動,運動到點停止,同時,點從點出發(fā)向點運動,運動到點即停止,點的速度都是每秒1個單位,連接、、.設(shè)點、運動的時間為

(1)當(dāng)為何值時,四邊形是矩形;

(2)當(dāng)時,判斷四邊形的形狀,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點A順時針旋轉(zhuǎn)60°得到ADE,點C的對應(yīng)點E恰好落在BA的延長線上,DEBC交于點F,連接BD.下列結(jié)論不一定正確的是(  )

A. AD=BD B. ACBD C. DF=EF D. CBD=E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角中,,點上一點,連接,以為直角頂點做等腰直角,連接于點,若,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,的平分線交于點,過點于點,交于點,那么下列結(jié)論:①;②;③都是等腰三角形;④的周長等于的和,其中正確的有(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD是正方形,MAB延長線上一點.直角三角尺的一條直角邊經(jīng)過點D,且直角頂點EAB邊上滑動(點E不與點AB重合),另一直角邊與∠CBM的平分線BF相交于點F

1)如圖1,當(dāng)點EAB邊得中點位置時:

通過測量DEEF的長度,猜想DEEF滿足的數(shù)量關(guān)系是

連接點EAD邊的中點N,猜想NEBF滿足的數(shù)量關(guān)系是 ,請證明你的猜想.

2)如圖2,當(dāng)點EAB邊上的任意位置時,猜想此時DEEF有怎樣的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案