【題目】比鄰而居的蝸牛神和螞蟻王相約,第二天上午8時結伴出發(fā),到相距16米的銀杏樹下參加探討環(huán)境保護問題的微型動物首腦會議.蝸牛神想到笨鳥先飛的古訓,于是給螞蟻王留下一紙便條后提前2小時獨自先行,螞蟻王按既定時間出發(fā),結果它們同時到達.已知螞蟻王的速度是蝸牛神的4倍,求它們各自的速度.

【答案】蝸牛神和螞蟻王的速度分別為6/小時和24/小時.

【解析】試題分析:

這是一道行程問題我們首先要利用“行程問題中的基本數(shù)量關系:路程=速度時間”,設蝸牛神的速度為x/小時,螞蟻王的速度為4x/小時,從而利用二者所行路程均為16米,表達出各自所用的時間,最后利用螞蟻王比蝸牛神少用2小時這一數(shù)量關系列出方程來求解.

試題解析

設蝸牛神的速度為x/小時,根據(jù)題意可得: ,

去分母得 ,

解得 ,經(jīng)檢驗: 是所列方程的解,

蝸牛神的速度是6/小時,螞蟻王的速度是24/小時.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 一個數(shù)前面加上“-”號這個數(shù)就是負數(shù) B. 非負數(shù)就是正數(shù)

C. 0既不是正數(shù),也不是負數(shù) D. 正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了打造森林城市,樹立城市新地標,實現(xiàn)綠色、共享發(fā)展理念,在城南建起了望月閣及環(huán)閣公園.小亮、小芳等同學想用一些測量工具和所學的幾何知識測量望月閣的高度,來檢驗自己掌握知識和運用知識的能力.他們經(jīng)過觀察發(fā)現(xiàn),觀測點與望月閣底部間的距離不易測得,因此經(jīng)過研究需要兩次測量,于是他們首先用平面鏡進行測量.方法如下:如圖,小芳在小亮和望月閣之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應位置為點C,鏡子不動,小亮看著鏡面上的標記,他來回走動,走到點D時,看到望月閣頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得小亮眼睛與地面的高度ED=1.5米,CD=2米,然后,在陽光下,他們用測影長的方法進行了第二次測量,方法如下:如圖,小亮從D點沿DM方向走了16米,到達望月閣影子的末端F點處,此時,測得小亮身高FG的影長FH=2.5米,FG=1.65米.

如圖,已知ABBM,EDBM,GFBM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關信息,求出望月閣的高AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖AB∥CE,BE平分∠ABC,CP平分∠BCE交BE于點P.

(1)求證:△BCP是直角三角形;

(2)若BC=5,S△BCP=6,求AB與CE之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程(m﹣2)x|m|+3mx+1=0是關于x的一元二次方程,則(
A.m=±2
B.m=2
C.m=﹣2
D.m≠±2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有大小兩種船,1艘大船與4艘小船一次可以載乘客46名,2艘大船與3艘小船一次可以載乘客57人。某船家有3艘大船與6艘小船,一次可以載游客的人數(shù)為( )
A.129
B.120
C.108
D.96

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABC=ADC=90°,對角線AC、BD交于點P,且AB=BD,AP=4PC=4,則cosACB的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使BED=C.

(1)判斷直線AC與圓O的位置關系,并證明你的結論;

(2)若AC=8,cosBED=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請寫出一個大于8而小于10的無理數(shù):

查看答案和解析>>

同步練習冊答案