【題目】在“愛(ài)我永州”中學(xué)生演講比賽中,五位評(píng)委分別給甲、乙兩位選手的評(píng)分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說(shuō)法中錯(cuò)誤的是( 。
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小

【答案】C
【解析】解:A、 = =8, = =8,故此選項(xiàng)正確;
B、甲得分次數(shù)最多是8分,即眾數(shù)為8分,乙得分最多的是9分,即眾數(shù)為9分,故此選項(xiàng)正確;
C、∵甲得分從小到大排列為:7、8、8、8、9,∴甲的中位數(shù)是8分;
∵乙得分從小到大排列為:6、7、9、9、9,∴乙的中位數(shù)是9分;故此選項(xiàng)錯(cuò)誤;
D、∵ = ×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]= ×2=0.4, = ×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]= ×8=1.6,∴ ,故D正確;
故選:C.
分別求出甲、乙的平均數(shù)、眾數(shù)、中位數(shù)及方差可逐一判斷.本題主要考查平均數(shù)、眾數(shù)、中位數(shù)及方差,熟練掌握這些統(tǒng)計(jì)量的意義及計(jì)算公式是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O是直線(xiàn)AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.

(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù);

(2)在圖①中,若∠AOC,直接寫(xiě)出∠DOE的度數(shù)(用含的代數(shù)式表示);

(3)將圖①中的∠DOC繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②的位置,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫(xiě)出你的結(jié)論,并說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若十位上的數(shù)字比個(gè)位上的數(shù)字、百位上的數(shù)字都大的三位數(shù)叫做中高數(shù),如796就是一個(gè)“中高數(shù)”.若一個(gè)三位數(shù)的十位上數(shù)字為7,且從4、5、6、8中隨機(jī)選取兩數(shù),與7組成“中高數(shù)”,那么組成“中高數(shù)”的概率是多少?(請(qǐng)用“畫(huà)樹(shù)狀圖”或“列表”等方法寫(xiě)出分析過(guò)程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩地相距70千米,甲從A地出發(fā),每小時(shí)行15千米,乙從B地出發(fā),每小時(shí)行20千米.

(1)若兩人同時(shí)出發(fā),相向而行,則經(jīng)過(guò)幾小時(shí)兩人相遇?

(2)若甲在前,乙在后,兩人同時(shí)同向而行,則幾小時(shí)后乙追上甲?

(3)若兩人同時(shí)出發(fā),相向而行,則幾小時(shí)后兩人相距10千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某檢修小組乘汽車(chē)從地出發(fā),在東西走向的馬路上檢修線(xiàn)路,如果規(guī)定向東行駛為正,一天中七個(gè)檢修點(diǎn)的行駛記錄如下(單位:):

-4,+7,-9,+8,+6,-4,-3.

(1)收工時(shí)汽車(chē)共行駛了多少千米?

(2)收工時(shí),汽車(chē)距地多遠(yuǎn)?

(3)在檢修時(shí),第幾個(gè)檢修點(diǎn)離地最遠(yuǎn),最遠(yuǎn)距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個(gè)外角.

實(shí)驗(yàn)與操作:根據(jù)要求進(jìn)行尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫(xiě)作法)

(1)作∠DAC的平分線(xiàn)AM;

(2)作線(xiàn)段AC的垂直平分線(xiàn),與AM交于點(diǎn)F,與BC邊交于點(diǎn)E,連接AE、CF

探究與猜想:若∠BAE=36°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在下列各圖中,點(diǎn)O為直線(xiàn)AB上一點(diǎn),∠AOC=60°,直角三角板的直角頂點(diǎn)放在點(diǎn)處.

(1)如圖1,三角板一邊OM在射線(xiàn)OB上,另一邊ON在直線(xiàn)AB的下方,則∠BOC的度數(shù)為   °,CON的度數(shù)為   °;

(2)如圖2,三角板一邊OM恰好在∠BOC的角平分線(xiàn)OE上,另一邊ON在直線(xiàn)AB的下方,此時(shí)∠BON的度數(shù)為   °;

(3)請(qǐng)從下列(A),(B)兩題中任選一題作答.

我選擇:   

A)在圖2中,延長(zhǎng)線(xiàn)段NO得到射線(xiàn)OD,如圖3,則∠AOD的度數(shù)為   °;DOC與∠BON的數(shù)量關(guān)系是∠DOC   BON(填“>”、“=”“<”);

B)如圖4,MNAB,ON在∠AOC的內(nèi)部,若另一邊OM在直線(xiàn)AB的下方,則∠COM+AON的度數(shù)為   °;AOMCON的度數(shù)為   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀后解決問(wèn)題:

“15.3分式方程一課的學(xué)習(xí)中,老師提出這樣的一個(gè)問(wèn)題:如果關(guān)于x的分式方程的解為正數(shù),那么a的取值范圍是什么?

經(jīng)過(guò)交流后,形成下面兩種不同的答案:

小明說(shuō):解這個(gè)關(guān)于x的分式方程,得到方程的解為x=a﹣2.

因?yàn)榻馐钦龜?shù),可得a﹣2>0,所以a>2.

小強(qiáng)說(shuō):本題還要必須a≠3,所以a取值范圍是a>2a≠3.

(1)小明與小強(qiáng)誰(shuí)說(shuō)的對(duì),為什么?

(2)關(guān)于x的方程有整數(shù)解,求整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:﹣14+ sin60°+( 2﹣( 0

查看答案和解析>>

同步練習(xí)冊(cè)答案