【題目】如圖,利用兩面靠墻(墻足夠長),用總長度37米的籬笆(圖中實(shí)線部分)圍成一個(gè)矩形雞舍ABCD,且中間共留三個(gè)1米的小門,設(shè)籬笆BC長為x米.
(1)AB=______.(用含x的代數(shù)式表示)
(2)若矩形雞舍ABCD 面積為150平方米,求籬笆BC的長.
(3)矩形雞舍ABCD面積是否有可能達(dá)到210平方米?若有可能,求出相應(yīng)x的值;若不可能,則說明理由.
【答案】(1)40-2x(2)15米或5米(3)不可能
【解析】
(1)直接由圖可知AB=總長度+3-2x.
(2) 由題意得:(40﹣2x)x=150,解得即可.
(3)由題意判斷(40﹣2x)x=210是否有解即可.
(1)∵中間共留三個(gè) 1 米的小門,
∴籬笆總長要增加 3 米,籬笆變?yōu)?40 米, 設(shè)籬笆 BC 長為 x 米,
∴AB=40﹣2x(米) 故答案為:40﹣2x.
(2)設(shè)籬笆 BC 長為 x 米. 由題意得:(40﹣2x)x=150解得:x=15,x=5
∴籬笆 BC 的長為:15 米或 5 米.
(3)不可能.
∵假設(shè)矩形雞舍 ABCD 面積是 210 平方米, 由題意得:(40﹣2x)x=210,
整理得:x2﹣20x+105=0, 此方程中△<0,
∴方程無解.
故矩形雞舍 ABCD 面積不可能達(dá)到 210 平方米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)A、C分別是∠B的兩條邊上的點(diǎn),點(diǎn)D、E分別是直線BA、BC上的點(diǎn),直線AE、CD相交于點(diǎn)P.
(1)點(diǎn)D、E分別在線段BA、BC上;
①若∠B=60°(如圖1),且AD=BE,BD=CE,則∠APD的度數(shù)為 ;
②若∠B=90°(如圖2),且AD=BC,BD=CE,求∠APD的度數(shù);
(2)如圖3,點(diǎn)D、E分別在線段AB、BC的延長線上,若∠B=90°,AD=BC,∠APD=45°,求證:BD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠AOB=90°,點(diǎn)A的坐標(biāo)為(4,2),BO=4,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)B,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)結(jié)合圖象直接寫出不等式-x+4>的解集
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是( 。
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長度后,點(diǎn)C恰好落在雙曲線在第一象限的分支上,則a的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的兩條切線,A、B是切點(diǎn),AC是⊙O的直徑,∠BAC=35°,求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,AD⊥BC,垂足為D,以 AD為直徑作⊙O,⊙O分別交AB、AC于 E、F.
(1)求證:BE=CF;
(2)設(shè) AD、EF相交于G,若 EF=8,⊙O的半徑為5,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P是⊙O外一點(diǎn),PO交⊙O于點(diǎn)C,OC=CP=4,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com