【題目】如圖所示雙曲線y= 分別位于第三象限和第二象限,Ay軸上任意一點,B上的點,Cy=上的點,線段BCx軸于D,4BD=3CD,則下列說法雙曲線y=在每個象限內(nèi),yx的增大而減小;②若點B的橫坐標(biāo)為-3,C點的坐標(biāo)為(-3, );k=4;④△ABC的面積為定值7.正確的有

A. I B. 2 C. 3 D. 4

【答案】B

【解析】1)由圖可知,反比例函數(shù)的一個分支位于第三象限,

雙曲線在每個象限內(nèi)yx的增大而減小,即說法正確

2)若B的橫坐標(biāo)為-3,則點B的坐標(biāo)為(-3,1),

此時BD=1,

∵4BD=3CD

∴3CD=4,

CD=,

C在第三象限,

C的坐標(biāo)為,即說法錯誤;

3)設(shè)點B的坐標(biāo)為,則BD=

∵4BD=3CD,

3CD=,

C在第三象限,BC⊥x,

此時C的坐標(biāo)為,

C在反比例函數(shù)的圖象上,

,即說法正確;

4)設(shè)點B的坐標(biāo)為,則由(3)可知,此時點C的坐標(biāo)為

BC=,

Ay軸上一點,

ABC的距離為,

SABC=AC·=,即說法錯誤.

綜上所述,正確的說法是①③,2.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了50名學(xué)生,并統(tǒng)計他們平均每天的課外閱讀時間t(單位:min),然后利用所得數(shù)據(jù)繪制成如下不完整的統(tǒng)計表.

課外閱讀時間t

頻數(shù)

百分比

10≤t30

4

8%

30≤t50

8

16%

50≤t70

a

40%

70≤t90

16

b

90≤t110

2

4%

合計

50

100%

請根據(jù)圖表中提供的信息回答下列問題:

1a=   ,b=   ;

(2)將頻數(shù)分布直方圖補(bǔ)充完整;

(3)若全校有900名學(xué)生,估計該校有多少學(xué)生平均每天的課外閱讀時間不少于50min?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以 RtABC 的直角邊 AC 及斜邊 AB 向外作等邊ACD,等邊ABE.已知∠ABC60°EFAB,垂足為 F,連接 DF.

(1)證明:△ACB≌△EFB

(2)求證:四邊形 ADFE 是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD是∠BAC的平分線,DE⊥AB,DF⊥AC,垂足分別是EF,則下列四個結(jié)論: (1) DE=DF; (2) AD上任一點到點C、點B的距離相等; (3) BD=CD,AD⊥BC;(4)∠BDE=∠CDF,其中,正確的有__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ykx3經(jīng)過點B(-,2),且與 x 軸交于點A.將拋物線 沿 x 軸作左右平移,記平移后的拋物線為C,其頂點為P.

(1)求∠OAB 的度數(shù);

(2)拋物線與直線 ykx3相交于 M,N兩點,求△MON的面積.

(3)在拋物線平移過程中,將△PAB 沿直線 AB 翻折得到△DAB,點D 能否落在拋物線C 上?如能,求出此時拋物線C 頂點P 的坐標(biāo);如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,直線EF分別與AB、CD交于點G,HGM⊥EF,HN⊥EF,交AB于點N∠1=50°

1)求∠2的度數(shù);

2)試說明HN∥GM;

3∠HNG=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別在OA,OC上

(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;

(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,∠C=90°,以點B為圓心,任意長為半徑畫弧,分別交ABBC于點M、N分別以點M、N為圓心,以大于MN的長度為半徑畫弧兩弧相交于點P過點P作線段BD,AC于點D,過點DDE⊥AB于點E,則下列結(jié)論①CD=ED②∠ABD=∠ABC;③BC=BE;④AE=BE中,一定正確的是(

A. B. ① ② ④C. ①③④D. ②③④

查看答案和解析>>

同步練習(xí)冊答案