【題目】如圖,在反比例函數(shù)的圖象上分別有一點,,連接軸于點,若,則__________

【答案】

【解析】

過點EEMx軸于點M,過點FFNx軸于點N,根據(jù)平行線分線段成比例定理得:NO=2MO=2,從而可得F22),結合E-1,1)可得直線EF的解析式,求出點G的坐標后即可求解.

過點EEMx軸于點M,過點FFNx軸于點N,如圖:

EMGOFN
2EG=FG
∴根據(jù)平行線分線段成比例定理得:NO=2MO
E-1,1
MO=1
NO=2
∴點F的橫坐標為2
F的圖象上
F2,2
又∵E-11
∴由待定系數(shù)法可得:直線EF的解析式為:y=
x=0時,y=
G0,
OG=
故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】把二次涵數(shù)的圖象先向左平移2個單位長度,再向上平移4個單位長度,得到二次函數(shù)的圖象.

(1)試確定,,的值;

(2)指出二次函數(shù)圖象的開口方向、對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l為正比例函數(shù)的圖象,點的坐標為,過點x軸的垂線交直線l于點,以為邊作正方形;過點作直線l的垂線,垂足為,交x軸于點,以為邊作正方形;過點x軸的垂線,垂足為,交直線l于點,以為邊作正方形……按此規(guī)律操作下去,得到的正方形的面積是______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為4,EBC邊上一點,BE=3M為線段AE上一點,射線BM交正方形的一邊于點F,且BF=AE,BM的長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】梧桐山是深圳最高的山峰,某校綜合實踐活動小組要測量主山峰的高度,先在梧桐山對面廣場的A處測得峰頂”C的仰角為45°,此時,他們剛好與峰底D在同一水平線上.然后沿著坡度為30°的斜坡正對著主山峰前行700米,到達B處,再測得峰頂”C的仰角為60°,如圖,根據(jù)以上條件求出主山峰的高度?(測角儀的高度忽略不計,結果精確到1).參考數(shù)據(jù):(1.4,1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019612日,重慶直達香港高鐵的車票正式開售據(jù)悉,重慶直達香港的這趟G319/320次高鐵預計在7月份開行,全程1342公里只需7個半小時該車次沿途停靠站點包括遵義、貴陽東、桂林西、肇慶東、廣州南和深圳北重慶直達香港高鐵開通將為重慶旅游業(yè)發(fā)展增添生機與活力,預計重慶旅游經(jīng)濟將創(chuàng)新高在此之前技術部門做了大量測試,在一次測試中一高鐵列車從地出發(fā)勻速駛向地,到達地停止;同時一普快列車從地出發(fā),勻速駛向地,到達地停止且,兩地之間有一地,其中,如圖①兩列車與地的距離之和(千米)與普快列車行駛時間(小時)之間的關系如圖②所示則高鐵列車到達地時,普快列車離地的距離為__________千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖平面直角坐標系中,點,軸上,,點軸上方,,,線段軸于點,,連接,平分,過點

1)點的坐標為

2)將沿線段向右平移得,當點重合時停止運動,記的重疊部分面積為,點為線段上一動點,當時,求的最小值;

3)當移動到點重合時,將繞點旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中,直線分別與直線、直線交于點、點,作點關于直線的對稱點,連接、.當為直角三角形時,直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GEBC,垂足為點E,GFCD,垂足為點F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關系,并說明理由:

(3)拓展與運用:

正方形CEGF在旋轉(zhuǎn)過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CGAD于點H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片,將其折疊使點與點重合,點的對應點為點,折痕為,那么的長分別為( )

A.4B.4C.5D.5

查看答案和解析>>

同步練習冊答案