【題目】如圖,以O(shè)(0,0)、A(2,0)為頂點作正△OAP1 , 以點P1和線段P1A的中點B為頂點作正△P1BP2 , 再以點P2和線段P2B的中點C為頂點作△P2CP3 , …,如此繼續(xù)下去,則第六個正三角形中,不在第五個正三角形上的頂點P6的坐標(biāo)是

【答案】( ,
【解析】解:由題意可得,每一個正三角形的邊長都是上個三角形的邊長的 ,則第六個正三角形的邊長是 ,
故頂點P6的橫坐標(biāo)是 ,P5縱坐標(biāo)是 = ,
P6的縱坐標(biāo)為
故答案為:( , ).
根據(jù)O(0,0),A(2,0)為頂點作△OAP1 , 再以P1和P1A的中B為頂點作△P1BP2 , 再P2和P2B的中C為頂點作△P2CP3 , …,如此繼續(xù)下去,結(jié)合圖形求出點P6的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把棱長為1cm的若干個小正方體擺放成如圖所示的幾何體,然后在露出的表面上涂上顏色(不含底面)

(1)該幾何體中有 小正方體?

(2)其中兩面被涂到的有 個小正方體;沒被涂到的有 個小正方體;

(3)求出涂上顏色部分的總面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料.

我們知道,1+2+3+…+n=,那么12+22+32+…+n2結(jié)果等于多少呢?

在圖1所示三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12,第2行兩個圓圈中數(shù)的和為2+2,即22,…;第nn個圓圈中數(shù)的和為n+n+n+…+n,即n2.這樣,該三角形數(shù)陣中共有個圓圈,所有圓圈中數(shù)的和為12+22+32+…+n2

(規(guī)律探究)

將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n﹣1行的第一個圓圈中的數(shù)分別為n﹣1,2,n),發(fā)現(xiàn)每個位置上三個圓圈中數(shù)的和均為   ,由此可得,這三個三角形數(shù)陣所有圓圈中數(shù)的總和為3(12+22+32+…+n2)=   ,因此,12+22+32+…+n2=   

(解決問題)

根據(jù)以上發(fā)現(xiàn),計算:的結(jié)果為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級班想買一些運動器材供班上同學(xué)陽光體育活動使用,班主任安排班長去商店買籃球和排球,下面是班長與售貨員的對話:

班長阿姨,您好! 售貨員同學(xué),你好想買點什么?

根據(jù)這段對話你能算出籃球和排球的單價各是多少嗎?

六一兒童節(jié)店里搞活動有兩種套餐,1、套裝打折:五個籃球和五個排球為一套裝,套裝打 八折:2、滿減活動:999 100,1999 200;兩種活動不重復(fù)參與,學(xué)校需要 15個籃球,13 個排球作為獎品請問如何安排購買更劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AOB和一條定長線段a,AOB內(nèi)找一點P,使點POA,OB的距離都等于a,作法如下:

①在AOB內(nèi)作OB的垂線段NH,使NH=a,H為垂足;②過NNMOB;③作AOB的平分線OP,NM交于點P;④點P即為所求.其中③的依據(jù)是(  )

A. 平行線之間的距離處處相等 B. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上

C. 角的平分線上的點到角的兩邊的距離相等 D. 線段垂直平分線上的點到線段兩端點的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC,AE=AF,BECF交于點D,則對于下列結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( 。

A. B. C. D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E點,DF⊥AC于F點,有下列結(jié)論:①BD=DC;②DE=DF;③AD上任意一點到AB,AC的距離相等;④AD上任意一點到B點與C點的距離不等.其中正確的是(  )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A、∠B、∠C所對的邊分別是a、b、c,在下列關(guān)系中,不屬于直角三角形的是(

A. b2=a2﹣c2 B. a:b:c=3:4:5

C. A﹣B=C D. A:B:C=3:4:5

查看答案和解析>>

同步練習(xí)冊答案