【題目】已知,在△ABC中,∠A90°,ABAC,DBC的中點,E,F分別是ABAC上的點,且BEAF

1)請你判斷△DEF形狀,并說明理由;

2)若BE2cm,CF4cm,求EF的長.

【答案】(1)DEF是等腰直角三角形,理由詳見解析;(2EF=2cm

【解析】

1)連接AD,構造全等三角形:BEDAFDAD是等腰直角三角形ABC底邊上的中線,所以有∠CAD=∠BAD45°ADBDCD,而∠B=∠C45°,所以∠B=∠DAF,再加上BEAF,ADBD,可證出:BED≌△AFD,從而得出DEDF,∠BDE=∠ADF,從而得出∠EDF90°,即DEF是等腰直角三角形;

2)延長EDG,使得DGDE,連接FG,CG,判定BDE≌△CDG,即可得出CGBE2cm,∠B=∠DCG45°=∠ACB,利用勾股定理可得,RtCFG中,FG2cm,再根據(jù)FD垂直平分EG,即可得到EFGF2cm

解:(1DEF是等腰直角三角形.

如圖,連接AD,

ABAC,∠BAC90°,DBC中點,

ADBCBDCD,且AD平分∠BAC

∴∠BAD=∠CAD45°,

BDEADF中,

,

∴△BDE≌△ADFSAS),

DEDF,∠BDE=∠ADF

∵∠BDE+ADE90°,

∴∠ADF+ADE90°,即∠EDF90°,

∴△EDF為等腰直角三角形.

2)如圖,延長EDG,使得DGDE,連接FG,CG,

DBC的中點,

BDCD,

又∵∠BDE=∠CDG,

∴△BDE≌△CDG,

CGBE2cm,∠B=∠DCG45°=∠ACB,

∴∠GCF90°

又∵CF4cm,

RtCFG中,FG2cm

∵∠EDF90°,EDGD

FD垂直平分EG,

EFGF2cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上點A表示的數(shù)為a,點B表示的數(shù)為b,且a,b滿足|a+2|+(3a+b)2=0,O為原點.

(1)則a= ,b= ;

(2)若動點P從點A出發(fā),以每秒1個單位長度的速度沿數(shù)軸向右勻速運動,

①當PO=2PB時,求點P的運動時間t;

②當點P運動到線段OB上時,分別取AP和OB的中點E、F,則的值為

(3)有一動點Q從原點O出發(fā)第一次向左運動1個單位長度,然后在新的位置第二次運動,向右運動2個單位長度,在此位置第三次運動,向左運動3個單位長度…按照如此規(guī)律不斷地左右運動,當運動到2015次時,求點Q所對應的有理數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店專營一批進價為每件200元的品牌襯衫,每件售價為300元時,每天可售出40件,若每件降價10元,則第天多售出10件,請根據(jù)以上信息解答下列問題:

(1)為了使銷售該品牌襯衫每天獲利4500元,并且讓利于顧客,每件售價應為多少元;

(2)該服裝店將該品牌的襯衫銷售完,在補貨時廠家只剩100件,經(jīng)協(xié)商每件降價a元,全部拿回。按(1)中的價格售出80件后,剩余的按八折銷售。售完這100件襯衫獲利20%,求a的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】表示有理數(shù)a、b的點在數(shù)軸上位置如圖所示,請解答下列各題:

1)填空

|a+2|   ;

|1b|   ;

③﹣|ba|   

2)化簡:|2a||b1|+|a+b|

3)若|a|2.4,|b|,則ab   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點P是∠AOB平分線上一點,PC⊥OA,PD⊥OB,垂足為C,D.

(1)∠PCD=∠PDC嗎?為什么?

(2)OP是CD的垂直平分線嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點EBC的中點,AE與對角線BD交于點F.

1)求證:DF=2BF;

2)當∠AFB=90°tanABD=時, CD=,求AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,貨輪甲從港口O出發(fā),沿東偏南的方向航行20海里后到達A處.(已知四個圓圈的半徑(由小到大)分別是5海里,10海里,15海里,20海里.)

1)寫出在港口O觀測燈塔B,C的方向及它們與港口的距離;

2)已知燈塔D在港口O的南偏西方向上,且與燈塔B相距35海里,在圖中標出燈塔D的位置.

3)貨輪乙從港口O出發(fā),沿正東方向航行15海里到達P處后,需把航行方向調整到與貨輪甲的航行方向一致,此時貨輪乙應向左(或右)轉多少度?并畫出貨輪乙航行線路示意圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明有 5 張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列各問題:

1)從中取出 2 張卡片,使這 2 張卡片上數(shù)字的乘積最大,乘積的最大值為 ;

2)從中取出 2 張卡片,使這 2 張卡片上數(shù)字相除的商最小,商的最小值為

3)從中取出 4 張卡片,用學過的運算方法,使結果為 24.寫出運算式子.(寫出一種即可)算 24 的式子為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小聰與小明在一張矩形臺球桌ABCD邊打臺球,該球桌長AB=4m,寬AD=2m,點O、E分別為AB、CD的中點,以ABOE所在的直線建立平面直角坐標系。

1)如圖1,MBC上一點;

①小明要將一球從點M擊出射向邊AB,經(jīng)反彈落入D袋,請你畫出AB上的反彈點F的位置;

②若將一球從點M(2,12)擊出射向邊AB上點F(0.5,0),問該球反彈后能否撞到位于(-0.50.8)位置的另一球?請說明理由

2)如圖2,在球桌上放置兩個擋板(厚度不計)擋板MQ的端點MAD中點上且MQADMQ=2m,擋板EH的端點H在邊BC上滑動,且擋板EH經(jīng)過DC的中點E

①小聰把球從B點擊出,后經(jīng)擋板EH反彈后落入D袋,當HBC中點時,試證明:DN=BN

②如圖3,小明把球從B點擊出,依次經(jīng)擋板EH和擋板MQ反彈一次后落入D袋,已知∠EHC=75°,請你直接寫出球的運動路徑BN+NP+PD的長。

查看答案和解析>>

同步練習冊答案