【題目】如圖,已知O是直線AB上一點,∠AOC=45°36’,OD平分∠BOC,求∠AOD的度數(shù).完成下列推理過程:
解:由題意可知,∠AOB是平角,
∠AOB= +∠BOC
因為∠AOC=45°36′
所以∠BOC= ° ′
又因為OD平分∠BOC
∴∠COD=∠BOC= ° ′
∴∠AOD=∠ +∠ = ° ′
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB、CD相交于點O,
(1)若∠AOC+∠BOD=90°,求∠BOC的度數(shù)
(2)若∠BOC比∠AOC的2倍多33°,求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于點D,過點D作DE∥AB交CA延長線于點E,連接AD,BD.
(1)△ABD的面積是________:
(2)求證:DE是⊙O的切線:
(3)求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,弦BC=2cm,∠ABC=60.
(1)求⊙O的直徑;
(2)若D是AB延長線上一點,連結(jié)CD,當BD長為多少時,CD與⊙O相切;
(3)若動點E以2cm/s的速度從點A出發(fā)沿著AB方向運動,同時動點F以1cm/s的速度從點B出發(fā)沿BC方向運動,設(shè)運動時間為t(s)(0<t<2),連結(jié)EF,當t為何值時,△BEF為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某制筆企業(yè)欲將200件產(chǎn)品運往,,三地銷售,要求運往地的件數(shù)是運往地件數(shù)的2倍,各地的運費如圖所示.設(shè)安排件產(chǎn)品運往地.
地 | 地 | 地 | |
產(chǎn)品件數(shù)(件) | |||
運費(元) |
(1)①根據(jù)信息補全上表空格.②若設(shè)總運費為元,寫出關(guān)于的函數(shù)關(guān)系式及自變量的取值范圍.
(2)若運往地的產(chǎn)品數(shù)量不超過運往地的數(shù)量,應(yīng)怎樣安排,,三地的運送數(shù)量才能達到運費最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中有對角線AC與BD相等,已知AB=4,BC=3,則有AB2+BC2=AC2,矩形在直線MN上繞其右下角的頂點B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)至圖②位置……依次類推,則:
(1)AC=__________.
(2)這樣連續(xù)旋轉(zhuǎn)2019次后,頂點B在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上在左側(cè)的一點,且A,B兩點間的距離為10。動點P從點A出發(fā),以每秒6個單位長度的度沿數(shù)軸向左勻速運動,設(shè)運動時間為t秒。
(1)數(shù)軸上點B表示的數(shù)是______;當點P運動到AB的中點時,它所表示的數(shù)是_____。
(2)動點Q從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),求:
①當點P運動多少秒時,點P追上點Q?
②當點P運動多少秒時,點P與點Q間的距離為8個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作⊙O的切線DE,交AC于點E,AC的反向延長線交⊙O于點F.
(1)求證:DE⊥AC;
(2)若DE+EA=8,⊙O的半徑為10,求AF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):
如圖1,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為__________;
(2)深入探究:
如圖2,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;
(3)拓展延伸:
如圖3,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com