如圖,點P是直線:上的點,過點P的另一條直線交拋物線于A、B兩點.
(1)若直線的解析式為,求A、B兩點的坐標;
(2)①若點P的坐標為(-2,),當PA=AB時,請直接寫出點A的坐標;
②試證明:對于直線上任意給定的一點P,在拋物線上都能找到點A,使得PA=AB成立.
(3)設(shè)直線交軸于點C,若△AOB的外心在邊AB上,且∠BPC=∠OCP,求點P的坐標.
解:(1)依題意,得解得,
∴A(,),B(1,1).
(2)①A1(-1,1),A2(-3,9).
②過點P、B分別作過點A且平行于軸的直線的垂線,垂足分別為G、H.
設(shè)P(,),A(,),∵PA=PB,∴△PAG≌△BAH,
∴AG=AH,PG=BH,∴B(,),
將點B坐標代入拋物線,得,
∵△=
∴無論為何值時,關(guān)于的方程總有兩個不等的實數(shù)解,即對于任意給定的
點P,拋物線上總能找到兩個滿足條件的點A.
(3)設(shè)直線:交y軸于D,設(shè)A(,),B(,).
過A、B兩點分別作AG、BH垂直軸于G、H.
∵△AOB的外心在AB上,∴∠AOB=90°,
由△AGO∽△OHB,得,∴.
聯(lián)立得,依題意,得、是方程的兩根,∴,∴,即D(0,1).
∵∠BPC=∠OCP,∴DP=DC=3.P
設(shè)P(,),過點P作PQ⊥軸于Q,在Rt△PDQ中,,
∴.∴(舍去),,∴P(,).
∵PN平分∠MNQ,∴PT=NT,∴,
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com