【題目】小明研究了這樣一道幾何題:如圖1,在△ABC中,把AB點(diǎn)A順時(shí)針旋轉(zhuǎn)α (0°<α<180°)得到AB′,把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC′,連接B′C′.當(dāng)α+β=180°時(shí),請(qǐng)問(wèn)△AB′C′邊B′C′上的中線AD與BC的數(shù)量關(guān)系是什么?以下是他的研究過(guò)程:
特例驗(yàn)證:
(1)①如圖2,當(dāng)△ABC為等邊三角形時(shí),AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為 .
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用
(3)如圖4,在四邊形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=6,在四邊形內(nèi)部是否存在點(diǎn)P,使△PDC與△PAB之間滿足小明探究的問(wèn)題中的邊角關(guān)系?若存在,請(qǐng)畫出點(diǎn)P的位置(保留作圖痕跡,不需要說(shuō)明)并直接寫出△PDC的邊DC上的中線PQ的長(zhǎng)度;若不存在,說(shuō)明理由.
【答案】(1)①;②4
(2) AD=BC,理由見(jiàn)解析
(3)存在,3
【解析】
(1)①由已知條件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°繼而∠B′=∠C′=30°,可得AD=AB′=BC
②當(dāng)∠BAC=90°時(shí),可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可證得△BAC≌△B′AC′,推出對(duì)應(yīng)邊相等,已知BC=8求出AD的長(zhǎng).
(2)先做輔助線,延長(zhǎng)AD到M,使得AD=DM,連接B′M、C′M,如圖1所示:
因?yàn)?/span>B′D=DC′,AD=DM,對(duì)角線相互平分,可得四邊形AC′MB′是平行四邊形,得出對(duì)應(yīng)邊相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可證明△BAC≌△AB′M,所以BC=AM,AD=BC;
(3)先做輔助線,作線段BC的垂直平分線交BE于P,即為點(diǎn)P的位置;延長(zhǎng)AD交BC的延長(zhǎng)線于M,線段BC的垂直平分線交BC于F,連接PA、PD、PC,作△PDC的中線PQ,連接DF交PC于O
假設(shè)P點(diǎn)存在,再證明理由.
根據(jù)已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CM=2,DM=4存在;
∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=BM=7,DE=EM﹣DM=7﹣4=3,
由已知DA=6,推得AE=DE
且BE⊥AD,可得PF是線段BC的垂直平分線,證得PA=PD
因?yàn)?/span>PB=PC,PF∥CD,可求得CF=BC=6,利用線段長(zhǎng)度可求得∠CDF=60°
利用全等三角形判定定理可證得△FCP≌△CFD(AAS),進(jìn)而證得四邊形CDPF是矩形,
得∠CDP=90°,∠ADP =60°,可得△ADP是等邊三角形,求出DQ、DP,在Rt△PDQ中可求得PQ長(zhǎng)度.
(1)①∵△ABC是等邊三角形
∴AB=BC=AC=AB′=AC′,∠BAC=60°
∵DB′=DC′
∴AD⊥B′C′
∵∠BAB′+∠CAC′=180°
∴∠BAC+∠B′AC′=180°
∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°
∴∠B′=∠C′=30°
∴AD=AB′=BC
故答案:
②∵∠BAB′+∠CAC′=180°
∴∠BAC+∠B′AC′=180°
∵∠BAC=90°
∴∠B′AC′=∠BAC=90°
在△BAC和△B′AC′中,
∴△BAC≌△B′AC′(SAS)
∴BC=B′C′
∵B′D=DC′
∴AD=B′C′=BC=4
故答案:4
(2)AD與BC的數(shù)量關(guān)系:AD=BC;理由如下:
延長(zhǎng)AD到M,使得AD=DM,連接B′M、C′M,如圖1所示:
∵B′D=DC′,AD=DM,
∴四邊形AC′MB′是平行四邊形,
∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,
∵∠BAB′+∠CAC′=180°,
∴∠BAC+∠B′AC′=180°,
∴∠BAC=∠AB′M,
在△BAC和△AB′M中,,
∴△BAC≌△AB′M(SAS),
∴BC=AM,
∴AD=BC;
(3)存在;作BE⊥AD于E,作線段BC的垂直平分線交BE于P,即為點(diǎn)P的位置;理由如下:
延長(zhǎng)AD交BC的延長(zhǎng)線于M,線段BC的垂直平分線交BC于F,連接PA、PD、PC,作△PDC的中線PQ,連接DF交PC于O,如圖4所示:
∵∠A+∠B=120°,
∴∠ADC=150°,
∴∠MDC=30°,
在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,
∴CM=2,DM=4,∠M=90°﹣∠MDC=60°,
在Rt△BEM中,∵∠BEM=90°,BM=BC+CM=12+2=14,∠MBE=90°﹣∠M=30°,
∴EM=BM=7,
∴DE=EM﹣DM=7﹣4=3,
∵DA=6,
∴AE=DE,
∵BE⊥AD,
∴PA=PD,
∵PF是線段BC的垂直平分線,
∴PB=PC,PF∥CD,
在Rt△CDF中,∵CD=6,CF=BC=6,
∴tan∠CDF===,
∴∠CDF=60°,
∴∠MDF=∠MDC+∠CDF=30°+60°=90°,
∴∠ADF=90°=∠AEB,
∴∠CBE=∠CFD,
∵∠CBE=∠PCF,
∴∠CFD=∠PCF=30°,
∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,
∴∠CPF=∠CDF=60°,
在△FCP和△CFD中,,
∴△FCP≌△CFD(AAS),
∴CD=PF,
∵CD∥PF,
∴四邊形CDPF是矩形,
∴∠CDP=90°,
∴∠ADP=∠ADC﹣∠CDP=60°,
∴△ADP是等邊三角形,
∴∠APD=60°,
∵∠BPF=∠CPF=90°﹣30°=60°,
∴∠BPC=120°,
∴∠APD+∠BPC=180°,
∴△PDC與△PAB之間滿足小明探究的問(wèn)題中的邊角關(guān)系;
在Rt△PDQ中,∵∠PDQ=90°,PD=DA=6,DN=CD=3,
∴PQ===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn),,繞點(diǎn)旋轉(zhuǎn)得到,點(diǎn)的對(duì)應(yīng)點(diǎn)在線段上,點(diǎn)的對(duì)應(yīng)點(diǎn)落在曲線上,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,已知正方形ABCD的邊長(zhǎng)是4,M在DC上,M是CD的中點(diǎn),點(diǎn)P是AC邊上的一動(dòng)點(diǎn),則當(dāng)DP+MP的值最小時(shí),在備用圖(答題卷上)中用尺規(guī)作出點(diǎn)P的位置,并直接寫出DP的長(zhǎng)是?
(2)如圖②,已知正方形ABCD的邊長(zhǎng)是4,點(diǎn)M是DC上的一個(gè)動(dòng)點(diǎn),連結(jié)AM,作BP⊥AM于點(diǎn)P,連結(jié)DP,當(dāng)DP最小時(shí),在備用圖(答題卷上)中用尺規(guī)作出點(diǎn)P的位置,并直接寫出DP的長(zhǎng)是?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,四邊形的對(duì)角線、相交于點(diǎn),.
(1)求證:;
(2)設(shè)的面積為,,求證:S四邊形ABCD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù) 的圖象與正比例函數(shù) 的圖象相交于(1,),兩點(diǎn),點(diǎn)在第四象限,∥ 軸,.
(1)求的值及點(diǎn)的坐標(biāo);
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線過(guò)點(diǎn),,點(diǎn)為直線下方拋物線上一動(dòng)點(diǎn),為拋物線頂點(diǎn),拋物線對(duì)稱軸與直線交于點(diǎn).
(1)求拋物線的表達(dá)式與頂點(diǎn)的坐標(biāo);
(2)在直線上是否存在點(diǎn),使得,,,為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)求出點(diǎn)坐標(biāo);
(3)在軸上是否存在點(diǎn),使?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△P1OA1,△P2A1A2,△P3A2A3……都是等腰Rt△,直角頂點(diǎn)P1(3,3),P2,P3……,均在直線y=﹣x+4上,設(shè)△P1OA1,△P2A1A2,△P3A2A3……的面積分別為S1,S2,S3……則S2019的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ACB=∠DBC,添加以下條件,不能判定△ABC≌△DCB的是( 。
A.∠ABC=∠DCBB.∠ABD=∠DCA
C.AC=DBD.AB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與函數(shù)的圖象交于,兩點(diǎn),且點(diǎn)的坐標(biāo)為.
(1)求的值;
(2)已知點(diǎn),過(guò)點(diǎn)作平行于軸的直線,交直線于點(diǎn),交函數(shù)的圖象于點(diǎn).
①當(dāng)時(shí),求線段的長(zhǎng);
②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com