【題目】操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經過點B,另一邊與射線DC相交于點Q,設A、P兩點間的距離為x.
探究:
(1)當點Q在邊CD上時,線段PQ與線段PB之間有怎樣的大小關系?試證明你觀察到的結論;
(2)當點Q在邊CD上時,設四邊形PBCQ的面積為y,求y與x之間的函數(shù)關系式,并寫出x的取值范圍;(3)當點P在線段AC上滑動時,△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應x的值;如果不可能,試說明理由.
【答案】(1)、PQ=PB;證明過程見解析;(2)、y=(0≤x<);(3)、x=0或1.
【解析】試題分析:(1)、過點P作MN∥BC,分別交AB、CD于點M、N,則四邊形AMND和四邊形BCNM都是矩形,△AMP和△CNP都是等腰三角形,得出NP=NC=MB,從而證明△QNP≌△PMB,從而得出答案;(2)、設AP=x,則M=MP=NQ=DN=x,BM=PN=CN=1-x,根據題意得出△PBC和△PCQ的面積,然后得出y與x的函數(shù)關系式;(3)、本題分三種情況進行討論,即①當點Q在邊DC上;②當點Q在邊DC的延長線上;③當點Q與C點重合.
試題解析:(1)、過點P作MN∥BC,分別交AB、CD于點M、N,則四邊形AMND和四邊形BCNM都是矩形,
△AMP和△CNP都是等腰三角形(如圖1),∴NP=NC=MB.
∵∠BPQ=90°∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90°∴∠QPN=∠PBM.
又∵∠QNP=∠PMB=90°∴△QNP≌△PMB(ASA),∴PQ=PB.
(2)、由(1)知△QNP≌△PMB,得NQ=MP.
設AP=x,∴AM=MP=NQ=DN=x,BM=PN=CN=1-x ∴CQ=CD-DQ=1-2×x=1-x
∴S△PBC=BCBM=×1×(1-x)=-x,
S△PCQ=CQPN=×(1-x)(1-x)=,
∴S四邊形PBCQ=S△PBC+S△PCQ=, 即y=(0≤x<).
(3)、△PCQ可能成為等腰三角形.
①當點Q在邊DC上,由得:
解得x1=0,x2=(舍去);
②當點Q在邊DC的延長線上(如圖2),由PC=CQ得:-x=x-1,
解得x=1.
③當點Q與C點重合,△PCQ不存在.
綜上所述,x=0或1時,△PCQ為等腰三角形
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y=﹣x2+bx+c交x軸于點A(﹣1,0)和點B,交y軸于點C(0,2)
(1)求拋物線的表達式;
(2)點P為第一象限拋物線上一點,是否存在使△PBC面積最大的點P?若不存在,請說明理由;若存在,求出點P的坐標;
(3)點D坐標為(1,﹣1),連接AD,將線段AD繞平面內某一點旋轉180度得線段MN(點M、N分別與點A、D對應),使點M、N都在拋物線上,求點M、N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=-+b(b>0,b為常數(shù))的圖象與x軸、y軸分別相交于點A、B,半徑為4的⊙O與x軸正半軸交于點C,與y軸正半軸相交于點D.
(1)若直線AB與⊙O相切于弧CD上一點,求b的值;
(2)若直線AB與⊙O有兩個交點F、G.
①b為何值時,⊙O上有且只有3個點到直線AB的距離為2?并求出此時直線被⊙O所截的弦FG的長;
②是否存在這樣的b,使得∠GOF=90°?若存在,求出b的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,分別交PA、PB于點C、D.若PA、PB的長是關于x的一元二次方程x2﹣mx+m﹣1=0的兩個根,求△PCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以四邊形的邊、、、為斜邊分別向外側作等腰直角三角形,直角頂點分別為、、、,順次連結這四個點,得四邊形.
(1)如圖1,當四邊形為矩形時,請判斷四邊形的形狀(不要求證明).
(2)如圖2,當四邊形為一般平行四邊形時,設
①試用含的代數(shù)式表示,寫出解答過程;
②求證:,并判斷四邊形是什么四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用若干個小立方塊搭成一個幾何體,使它從正面看與從左面看都是如圖的同一個圖.通過實際操作,并與同學們討論,解決下列問題:
(1)所需要的小立方塊的個數(shù)是多少?你能找出幾種?
(2)畫出所需個數(shù)最少和所需個數(shù)最多的幾何體從上面看到的圖,并在小正方形里注明在該位置上小立方塊的個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認為其中錯誤的是( )
A.①②B.②③C.①③D.②④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com