在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B

小題1:求△ADF∽△DEC.
小題2:AB=4,AD=3根號(hào)3,AE=3,求AF的長

小題1:證明:∵四邊形ABCD是平行四邊形
∴AD∥BC   AB∥CD
∴∠ADF=∠CED    ∠B+∠C=180°
∵∠AFE+∠AFD=180 ∠AFE=∠B
∴∠AFD=∠C
∴△ADF∽△DEC
小題2:解:∵四邊形ABCD是平行四邊形
∴AD∥BC  CD=AB=4
又∵AE⊥BC       ∴ AE⊥AD
在Rt△ADE中,DE=
∵△ADF∽△DEC
∴        ∴    AF=
(1)△ADF和△DEC中,易知∠ADF=∠CED(平行線的內(nèi)錯(cuò)角),而∠AFD和∠C是等角的補(bǔ)角,由此可判定兩個(gè)三角形相似;
(2)在Rt△ABE中,由勾股定理易求得BE的長,即可求出EC的值;從而根據(jù)相似三角形得出的成比例線段求出AF的長.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在中,點(diǎn)、分別是的中點(diǎn).求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平行四邊形

(1)用直尺和圓規(guī)作出的平分線,交于點(diǎn),(保留作圖痕跡,不要求寫作法)(2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF。

小題1:求證:AF=DC;
小題2:如果AB=AC,試猜想四邊形ADCF的形狀,并證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定頂點(diǎn)在矩形邊上的菱形叫做矩形的內(nèi)接菱形,現(xiàn)給出(Ⅰ)、(Ⅱ)、(Ⅲ)三個(gè)命題:

命題(Ⅰ):圖①中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅱ):圖②中,若點(diǎn)E、F、G和H分別是AB、BC、CD和DE的中點(diǎn),則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅲ):圖③中,若EF垂直平分對(duì)角線AC,變BC于點(diǎn)E,交AD于點(diǎn)F,交AC于點(diǎn)O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
請(qǐng)解決下列問題:
小題1:命題(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命題嗎?請(qǐng)你在其中選擇一個(gè),并證明它是真命題或假命題;
小題2:畫出一個(gè)新的矩形內(nèi)接菱形(即與你在(1)中所確認(rèn)的,但不全等的內(nèi)接菱形).
小題3:試探究比較圖①,②,③中的四邊形ABGH、EFGH、AECF的面積大小關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

□ABCD面積為8,以AB、BC為邊向外作正方形ABEF、BCHG,則     ▲   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)角線互相垂直平分且相等的四邊形是(    )
A.菱形;B.矩形;C.正方形;D.等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長交OC于E.
小題1:求點(diǎn)B的坐標(biāo)
小題2:求證:四邊形ABCE是平行四邊形;
小題3:如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖1,在□ABCD中,CE⊥AB,為垂足.如果∠A=125°,則∠BCE的度數(shù)為
A.55°B.35°
C.25°D.30°

查看答案和解析>>

同步練習(xí)冊(cè)答案