【題目】世界衛(wèi)生組織預(yù)計(jì):到2025年,全世界將會有一半人面臨用水危機(jī),為了倡導(dǎo)節(jié)約用水,從我做起,某縣政府決定對縣直屬機(jī)關(guān)300戶家庭一年的月平均用水量進(jìn)行調(diào)查,調(diào)查小組抽查了部分家庭月平均用水量(單位:噸),繪制條形圖和扇形圖如圖所示.

(1)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)這些家庭月平均用水量數(shù)據(jù)的平均數(shù)是_______,眾數(shù)是______,中位數(shù)是_______;

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該縣直屬機(jī)關(guān)300戶家庭的月平均用水量不超過12噸的約有多少戶.

【答案】(1)補(bǔ)圖見解析;(2)11.6,11,11;(3)210.

【解析】

1)利用總戶數(shù)乘相應(yīng)的百分比,即可得出答案,再補(bǔ)全即可;

2)利用眾數(shù),中位數(shù)以及平均數(shù)的公式進(jìn)行計(jì)算即可;

3)根據(jù)樣本中不超過12噸的戶數(shù),再估計(jì)300戶家庭中月平均用水量不超過12噸的戶數(shù)即可.

解:(1)由圖知:被調(diào)查的總戶數(shù)=10÷20%=50(),

則月平均用水量是11噸的用戶數(shù)=50×40%=20()

補(bǔ)全條形圖如圖所示:

(2) 50 個(gè)樣本數(shù)據(jù)的平均數(shù)是 11.6,眾數(shù)是11,中位數(shù)是11,

故答案為;11.6,11,11;

(3)樣本中不超過12噸的有10+20+5=35(),

則該縣直屬機(jī)關(guān)300戶家庭的月平均用水量不超過12噸的約有=210().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正方形A1B1C1O,A2B2C2C1A3B3C3C2按如圖所示方式放置,點(diǎn)A1,A2,A3和點(diǎn)C1,C2,C3,分別在直線x軸上,則點(diǎn)B2019的橫坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滴滴打車是一種網(wǎng)上約車方式,更方便人們出行,小明國慶節(jié)第一天下午營運(yùn)全是在安慶某大道南北走向的公路上進(jìn)行,如果向南記作,向北記作。他這天下午行車情況如下:(單位:千米,每次行車都有乘客),,,,,請回答:

1)小明最后一名乘客送到目的地時(shí),小明在下午出車的出發(fā)地的什么方向?距下午出車的出發(fā)地多遠(yuǎn)?

2)若小明的出租車每千米油耗升,每升汽油元,這八次出車共耗油費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(﹣7×(﹣5)﹣90÷(﹣15

2)(﹣13﹣(1÷3×[(﹣225]

3)(﹣12×÷|3|+(﹣0.25÷6

4)﹣3212×(﹣+4÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△A1B1A2,△A2B2A3,△A3B3A4,...,△AnBnAn+1都是等腰直角三角形,其中點(diǎn)A1、A2、An,在x軸上,點(diǎn)B1、B2、…Bn在直線y=x上,已知OA1=1,則OA2019的長是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將矩形紙片ABCD沿對角線BD向上折疊,點(diǎn)C落在點(diǎn)E處,BEAD于點(diǎn)F.

(1)求證:△BDF是等腰三角形;

(2)如圖2,過點(diǎn)DDGBE,交BC于點(diǎn)G,連接FGBD于點(diǎn)O.

①判斷四邊形BFDG的形狀,并說明理由;

②若AB=6,AD=8,求FG的長.

1

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:是最小的兩位正整數(shù),且滿足,請回答問題:

(1)請直接寫出的值: ,=

(2)在數(shù)軸上所對應(yīng)的點(diǎn)分別為A、BC ,點(diǎn)P為該數(shù)軸上的動點(diǎn),其對應(yīng)的數(shù)為,點(diǎn)P在點(diǎn)A與點(diǎn)C之間運(yùn)動時(shí)(包含端點(diǎn)),則AP PC

(3)在(1)(2)的條件下,若點(diǎn)MA出發(fā),以每秒1個(gè)單位長度的速度向終點(diǎn)C移動,當(dāng)點(diǎn)M運(yùn)動到B點(diǎn)時(shí),點(diǎn)NA出發(fā),以每秒3個(gè)單位長度向C點(diǎn)運(yùn)動,N點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回點(diǎn)A,設(shè)點(diǎn)M 移動時(shí)間為t秒,當(dāng)點(diǎn)N開始運(yùn)動后,請用含t的代數(shù)式表示M、N兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(教材回顧)

七上教材有這樣一段文字:人們通過長期觀察發(fā)現(xiàn)如果早晨天空中棉絮的高積云,那么午后常有雷雨降臨,于是有了“朝有破絮云,午后雷雨臨”的諺語.在數(shù)學(xué)的學(xué)習(xí)過程中,我們經(jīng)常用這樣的方法探究規(guī)律.

(數(shù)學(xué)問題)

四邊形有4個(gè)頂點(diǎn),如果在它的內(nèi)部再畫n個(gè)點(diǎn),并以這(n+4)個(gè)點(diǎn)為頂點(diǎn)畫三角形,那么最多可以剪得多少個(gè)這樣的三角形?

(問題探究)

為了解決這個(gè)問題,我們可以從n=1,n=2,n=3等具體的、簡單的情形入手,探索最多可以剪得的三角形個(gè)數(shù)的變化規(guī)律.

(問題解決)

1)當(dāng)四邊形內(nèi)有4個(gè)點(diǎn)時(shí),最多剪得的三角形個(gè)數(shù)為______________;

2)你發(fā)現(xiàn)的變化規(guī)律是:四邊形內(nèi)的點(diǎn)每增加1個(gè),最多剪得的三角形增加______個(gè);

3)猜想:當(dāng)四邊形內(nèi)點(diǎn)的個(gè)數(shù)為n時(shí),最多可以剪得_______________個(gè)三角形;像這樣通過對簡單情形的觀察、分析,從特殊到一般地探索這類現(xiàn)象的規(guī)律、提出猜想的思想方法稱為歸納.

(問題拓展)

請你嘗試用歸納的方法探索4+6+8+10+…+2n+(2n+2)的和是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點(diǎn)A向右移動1個(gè)單位得到B,點(diǎn)B向右移動(n1)個(gè)單位得到點(diǎn)C,點(diǎn)C向右移動(n2)(n為正整數(shù))個(gè)單位得到點(diǎn)D,點(diǎn)A,B,C,D分別表示有理數(shù)a,b,c,d

(1)當(dāng)n1時(shí),B,C兩點(diǎn)的距離為 個(gè)單位,C,D兩點(diǎn)的距離為 個(gè)單位;

(2)當(dāng)a=-10,n1時(shí),若A,B兩點(diǎn)以2個(gè)單位長度/秒的速度向右勻速運(yùn)動,同時(shí)C,D兩點(diǎn)以1個(gè)單位長度/秒的速度向左勻速運(yùn)動,并設(shè)運(yùn)動時(shí)間為t秒,若AB兩點(diǎn)都運(yùn)動在C,D兩點(diǎn)之間(不與CD兩個(gè)點(diǎn)重合)時(shí),求t的取值范圍;

(3)a,b,c,d四個(gè)數(shù)的積為正數(shù),且這四個(gè)數(shù)的和與其中的兩個(gè)數(shù)的和相等,a為整數(shù).n分別取1,2,3,4……50時(shí),對應(yīng)的a的值分貝記為a1a2,a3,……a50,則a1a2a3……a50

查看答案和解析>>

同步練習(xí)冊答案