作業(yè)寶如圖,P為△ABC內(nèi)一點,∠BAC=30°,∠ACB=90°,∠BPC=120°.若BP=數(shù)學公式,則△PAB的面積為________.


分析:如圖,作△BPC的外接圓⊙O,交AC的延長線于D,連接BD、PD.利用切線的性質(zhì)和圓內(nèi)接四邊形的內(nèi)對角互補得到∠BDA=180°-∠BPC=60°,所以∠ABD=180°-∠BAC-∠BDA=90°,即AB是⊙O的切線.設(shè)∠ABP=∠BDP=α.通過解直角△ABD、△BPD求得AB、AP的長度,然后由三角形的面積公式S=absinC進行計算即可.
解答:解:如圖,作△BPC的外接圓⊙O,交AC的延長線于D,連接BD、PD.
∵∠ACB=90°,
∴∠BCD=90°,
∴BD是⊙O的直徑.
∵四邊形BDCP是圓內(nèi)接四邊形,
∴∠BDA=180°-∠BPC=60°,
∴∠ABD=180°-∠BAC-∠BDA=180°-30°-60°=90°,則AB是⊙O的切線.
設(shè)∠ABP=∠BDP=α.
在直角△ABD中,AB=BD•tan∠BDA=BD,
在直角△BPD中,BP=BD•sin∠BDP=BDsinα=,
則△PAB的面積是:AB•BPsin∠ABP=×BD×sinα=
點評:本題考查了圓的綜合題.其中涉及到了圓周角定理,圓內(nèi)接四邊形的性質(zhì),解直角三角形以及三角形的面積計算.此題的難點是作出△BPC的外接圓⊙O.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、已知:如圖,D為△ABC內(nèi)一點,AC=BC,CD平分∠ACB.
求證:∠ABD=∠BAD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,D為△ABC內(nèi)一點,E為△ABC外一點,且∠1=∠2,∠3=∠4.
證明:△ABC∽△DBE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,D為△ABC內(nèi)一點連接BD、AD,以BC為邊在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,BE、
CE交于E,連接DE.
(1)求證:
BC
AB
=
BE
BD
;
(2)求證:△DBE∽△ABC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,D為△ABC內(nèi)的一點,E為△ABC外的一點,且∠1=∠2,∠3=∠4.
(1)求證:△ABD∽△CBE.
(2)求證:△ABC∽△DBE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,O為△ABC內(nèi)一點,以O(shè)為位似中心,作△A′B′C′∽△ABC,且相似比為2.

查看答案和解析>>

同步練習冊答案