【題目】如圖,在ABC中,C=90°,AC=BC=4cm,點D是斜邊AB的中點,點E從點B出發(fā)以1cm/s的速度向點C運(yùn)動,點F同時從點C出發(fā)以一定的速度沿射線CA方向運(yùn)動,規(guī)定:當(dāng)點E到終點C時停止運(yùn)動;設(shè)運(yùn)動的時間為x秒,連接DE、DF.

(1)填空:SABC=   cm2;

(2)當(dāng)x=1且點F運(yùn)動的速度也是1cm/s時,求證:DE=DF;

(3)若動點F以3cm/s的速度沿射線CA方向運(yùn)動;在點E、點F運(yùn)動過程中,如果有某個時間x,使得ADF的面積與BDE的面積存在兩倍關(guān)系,請你直接寫出時間x的值;

【答案】(1)8(2)證明見解析(3)或4或

【解析】

(1)直接可求△ABC的面積;(2)連接CD,根據(jù)等腰直角三角形的性質(zhì)可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD,且BE=CF,即可證△CDF≌△BDE,可得DE=DF;
(3)分△ADF的面積是△BDE的面積的兩倍和△BDE與△ADF的面積的2倍兩種情況討論,根據(jù)題意列出方程可求x的值.

(1)∵SABC=AC×BC

∴SABC=×4×4=8(cm2

故答案為:8

(2)如圖:連接CD

AC=BC,D是AB中點

CD平分∠ACB

∵∠ACB=90°

∴∠A=∠B=∠ACD=∠DCB=45°

∴CD=BD

依題意得:BE=CF

CDF與BDE中,

∴△CDF≌△BDE(SAS)

∴DE=DF

(3)如圖:過點D作DMBC于點M,DNAC于點N,

∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°

∴△ADN≌△BDM(AAS)

∴DN=DM

若SADF=2SBDE

×AF×DN=2××BE×DM

∴|4﹣3x|=2x

∴x1=4,x2=

若2SADF=SBDE

∴2××AF×DN=×BE×DM

∴2×|4﹣3x|=x

∴x1=,x2=

綜上所述:x=或4或.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有20箱橘子,以每箱25千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:

(1)20箱橘子中,最重的一箱比最輕的一箱多重多少干克?

(2)與標(biāo)準(zhǔn)重量比較,20箱橘子總計超過或不足多少千克?

(3)若橘子每千克售價2.5元,則出售這20箱橘子可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB和RtCOD中,AOB=COD=90°,B=40°C=60°,點D在邊OA上,將圖中的COD繞點O按每秒10°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第 秒時,邊CD恰好與邊AB平行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于每個非零自然數(shù)n,拋物線y=x2 x+ 與x軸交于An、Bn兩點,以AnBn表示這兩點間的距離,則A1B1+A2B2+…+A2017B2017的值是(
A.
B.
C.
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b與x軸正半軸交于點A,與y軸負(fù)半軸交于點B,圓心P在x軸的正半軸上,已知AB=10,AP=

(1)求點P到直線AB的距離;

(2)求直線y=kx+b的解析式;

(3)在圖中存在點Q,使得BQO=90°,連接AQ,請求出AQ的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABCRtADEABCADE=90°,BCDE相交于點F,連接CD,EB.

(1)圖中還有幾對全等三角形,請你一一列舉;

(2)求證:CFEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知數(shù)軸上有三點A、BC,它們對應(yīng)的數(shù)分別為ab、c,且cb=ba;點C對應(yīng)的數(shù)是10

1)若BC=15,求a、b的值;

2)如圖2,在(1)的條件下,O為原點,動點P、Q分別從A、C同時出發(fā),點P向左運(yùn)動,運(yùn)動速度為2個單位長度/秒,點Q向右運(yùn)動,運(yùn)動速度為1個單位長度/秒,NOP的中點,MBQ的中點.

①用含t代數(shù)式表示PQ、 MN

②在P、Q的運(yùn)動過程中,PQMN存在一個確定的等量關(guān)系,請指出他們之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)ykxb的圖像經(jīng)過點(-2,4),且與正比例函數(shù)y=2x的圖像平行.

(1) 求一次函數(shù)ykxb的解析式;

(2) 求一次函數(shù)ykxb的圖像與坐標(biāo)軸所圍成的三角形的面積;

(3) A(a,y1),B(ab,y2)為一次函數(shù)ykxb的圖像上兩個點,試比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育中考前,抽樣調(diào)查了九年級學(xué)生的“1分鐘跳繩”成績,并繪制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補(bǔ)全頻數(shù)分布直方圖;
(2)扇形圖中m=;
(3)若“1分鐘跳繩”成績大于或等于140次為優(yōu)秀,則估計全市九年級5900名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?

查看答案和解析>>

同步練習(xí)冊答案