精英家教網(wǎng)如圖,已知AB是⊙O的弦,半徑OA=6cm,∠AOB=120°,則AB=
 
cm.
分析:過O作OC⊥AB于C,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理求出∠A,根據(jù)含30度得直角三角形性質(zhì)求出OC,根據(jù)勾股定理求出AC,根據(jù)垂徑定理求出即可.
解答:精英家教網(wǎng)解:過O作OC⊥AB于C,
∵OA=OB,
∴∠A=∠B,
∵∠AOB=120°,
∴∠A=∠B=
1
2
(180°-∠AOB)=30°,
∴OC=
1
2
OA=3(cm),
由勾股定理得:AC=
OA2-OC2
=3
3
(cm),
∵OC⊥AB,OC過圓心O,
∴AC=BC,
∴AB=2AC=6
3
(cm),
故答案為:6
3
cm.
點評:本題主要考查對三角形的內(nèi)角和定理,勾股定理,等腰三角形的性質(zhì),垂徑定理,含30度角的直角三角形等知識點的理解和掌握,能求出OC、AC的長是解此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案