【題目】圖1是某小型汽車的側(cè)面示意圖,圖2表示該車的后備箱開起示意圖,BC,AD都垂直于地面CD,∠ABC=138°,AB=80厘米,BC=130厘米.求點(diǎn)A到地面的距離(即AD的長,結(jié)果保留到1厘米).參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11.
【答案】189厘米
【解析】
過點(diǎn)B作BE⊥AD于點(diǎn)E,由題意可知四邊形BCDE為矩形,∠CBE=90°,DE=BC=130 cm,根據(jù)∠ABC=138°可得∠ABE=48°,利用sin∠ABE=即可求得AE的長,進(jìn)而可求得AD長即可
解:過點(diǎn)B作BE⊥AD于點(diǎn)E,
則四邊形BCDE為矩形,∠CBE=90°,DE=BC=130 cm
因?yàn)?/span>∠ABC=138°
所以∠ABE=48°
因?yàn)樵?/span>Rt△ABE中,sin∠ABE=
所以AE=AB×sin48°≈80×0.74=59.2
所以AD=130+59.2=189.2 cm≈189 cm
答:點(diǎn) A 到地面的距離為189厘米
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩超市(大型商場)同時(shí)開業(yè),為了吸引顧客,都舉行有獎(jiǎng)酬賓活動(dòng):凡購物滿元,均可得到一次摸獎(jiǎng)的機(jī)會.在一個(gè)紙盒里裝有個(gè)紅球和個(gè)白球(編號分別為紅1、紅、白1、白),除顏色外其它都相同,摸獎(jiǎng)?wù)咭淮螐闹忻鰞蓚(gè)球,根據(jù)球的顏色決定送禮金券(在他們超市使用時(shí),與人民幣等值)的多少(如表)
甲超市:
球 | 兩紅 | --紅一白 | 兩白 |
禮金券(元) |
乙超市:
球 | 兩紅 | --紅一白 | 兩白 |
禮金券(元) |
(1)列舉出一次摸獎(jiǎng)時(shí)兩球的所有情況;
(2)如果只考慮中獎(jiǎng)因素,你將會選擇去哪個(gè)超市購物?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),交y軸于點(diǎn)E.
(1)求此拋物線的解析式.
(2)若直線y=x+1與拋物線交于A、D兩點(diǎn),與y軸交于點(diǎn)F,連接DE,求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高爾基說:“書,是人類進(jìn)步的階梯.”閱讀可以豐富知識、拓展視野、充實(shí)生活等諸多益處.為了解學(xué)生的課外閱讀情況,某校隨機(jī)抽查了部分學(xué)生閱讀課外書冊數(shù)的情況,并繪制出如下統(tǒng)計(jì)圖,其中條形統(tǒng)計(jì)圖因?yàn)槠茡p丟失了閱讀5冊書數(shù)的數(shù)據(jù).
(1)求條形圖中丟失的數(shù)據(jù),并寫出閱讀書冊數(shù)的眾數(shù)和中位數(shù);
(2)根據(jù)隨機(jī)抽查的這個(gè)結(jié)果,請估計(jì)該校1200名學(xué)生中課外閱讀5冊書的學(xué)生人數(shù);
(3)若學(xué)校又補(bǔ)查了部分同學(xué)的課外閱讀情況,得知這部分同學(xué)中課外閱讀最少的是6冊,將補(bǔ)查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒有改變,試求最多補(bǔ)查了多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于兩點(diǎn),與反比例函數(shù)交于點(diǎn)點(diǎn)的坐標(biāo)為軸于點(diǎn).
(1)點(diǎn)的坐標(biāo)為 ;
(2)若點(diǎn)為的中點(diǎn),求反比例函數(shù)的解析式;
(3)在(2)條件下,以為邊向右作正方形交于點(diǎn)直接寫出的周長與的周長的比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1⊥l2于點(diǎn)M,以l1上的點(diǎn)O為圓心畫圓,交l1于點(diǎn)A,B,交l2于點(diǎn)C,D,OM=4,CD=6,點(diǎn)E為上的動(dòng)點(diǎn),CE交AB于點(diǎn)F,AG⊥CE于點(diǎn)G,連接DG,AC,AD.
(1)求⊙O的半徑長;
(2)若DG∥AB,求DG的長;
(3)連接DE,是否存在常數(shù)k,使成立?若存在,請求出k的值;若不存在,請說明理由;
(4)當(dāng)點(diǎn)G在AD的右側(cè)時(shí),請直接寫出△ADG面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)如圖①,若點(diǎn)D是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m(0<m<3),連接CD,BD,BC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時(shí),求m的值;
(3)若點(diǎn)N為拋物線對稱軸上一點(diǎn),請?jiān)趫D②中探究拋物線上是否存在點(diǎn)M,使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,AE平分∠DAC,AE交CD于點(diǎn)F,CE⊥AE,垂足為點(diǎn)E,EG⊥CD,垂足為點(diǎn)G,點(diǎn)H在邊BC上,BH=DF,連接AH、FH,FH與AC交于點(diǎn)M.下面結(jié)論:①FH=2BH;②AC⊥FH;③DF=1;④ EG2=FGDG.其中正確的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=分別交x軸、y軸于點(diǎn)A和點(diǎn)A1,過點(diǎn)A1作A1B1⊥l,交x軸于點(diǎn)B1,過點(diǎn)B1作B1A2⊥x軸,交直線l于點(diǎn)A2;過點(diǎn)A2作A2B2⊥l,交x軸于點(diǎn)B2,過點(diǎn)B2作B2A3⊥x軸,交直線l于點(diǎn)A3;依此規(guī)律...若圖中陰影△A1OB1的面積為S1,陰影△A2B1B2的面積S2,陰影△A3B2B3的面積S3...,則Sn=__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com