【題目】(9分)在如圖的方格中,△OAB的頂點坐標分別為O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1與△OAB是關于點P為位似中心的位似圖形.
(1)在圖中標出位似中心P的位置,并寫出點的坐標及△O1A1B1與△OAB的相似比;
(2)以原點O為位似中心,在y軸的左側畫出△OAB的一個位似△OA2B2,使它與△OAB的位似比為2:1,并寫出點B的對應點B2的坐標;
(3)在(2)條件下,若點M(a,b)是△OAB邊上一點(不與頂點重合),寫出M在△OA2B2中的對應點M2的坐標.
【答案】(1)作圖詳見解析;點P(﹣5,﹣1);△O1A1B1與△OAB的相似比為2:1;(2)作圖詳見解析;B2的坐標為(﹣2,﹣6);(3)M2的坐標為(2a,2b).
【解析】
試題(1)連結O1O且延長,連結A1A且延長,它們的交點為點P,由于A1P:AP=2:1,則△O1A1B1與△OAB的相似比為2:1;
(2)延長OA到A2使OA2=2OA,延長OB到B2使OB2=2OB,連結A2B2,則可得到△OA2B2,然后寫出B2的坐標;
(3)由于△OA2B2與△OAB在位似中心的同側,且位似比為2,則把M點的橫縱坐標都乘以2就可得到M2的坐標.
試題解析:解:(1)如圖,點P的坐標為(﹣5,﹣1),
△O1A1B1與△OAB的相似比為2:1;
(2)如圖,△OA2B2為所求,B2的坐標為(﹣2,﹣6);
(3)M2的坐標為(2a,2b).
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,延長AD至點E,使DE=AD,連接BD.
(1)求證:四邊形BCED是平行四邊形;
(2)若DA=DB=2,cosA=,求點B到點E的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,小正方形方格的邊長為 1,
按要求作圖,并根據要求解答問題:
(1)作圖:連接圖中小正方形方格的某兩個頂點,分別得到三條線段、、,使得、、;
(2)判斷(1)中的三條線段、、能否構成三角形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點D為邊AC上一點,連接BD,作AH⊥BD的延長線于點H,過點C作CE//AH與BD交與點E,連結AE并延長與BC交于點F.現有如下4個結論:①∠HAD=∠CBD;②△ADE∽△BFE;③CE·AH=HD·BE;④若D為AC中點,則,其中正確結論有( )個.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,等邊△ABC的邊BC在x軸上,A(0,3),B(,0),點M(,0)為x軸上的一個動點,連接AM,將AM繞點A逆時針旋轉60°得到AN.
(1)當M點在B點的左方時,連接CN,求證:△BAM≌△CAN;
(2)如圖2,當M點在邊BC上時,過點N作ND//AC交x軸于點D,連接MN,若,試求D點的坐標;
(3)如圖3,是否存在點M,使得點N恰好在拋物線上,如果存在,請求出m的值,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數關系式;
(2)設點P是直線l上的一個動點,當△PAC的周長最小時,求點P的坐標;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,過點O作OD⊥AB,交BC的延長線于D,交AC于點E,F是DE的中點,連接CF.
(1)求證:CF是⊙O的切線.
(2)若∠A=22.5°,求證:AC=DC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是某品牌臺燈豎直擺放在水平桌面上的側面示意圖,其中為桌面(臺燈底座的厚度忽略不計),臺燈支架與燈管的長度都為,且夾角為(即),若保持該夾角不變,當支架繞點順時針旋轉時,支架與燈管落在位置(如圖2所示),則燈管末梢的高度會降低_______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com