【題目】大熊山某農家樂為了抓住“五一”小長假的商機,決定購進A、B兩種紀念品。若購進A種紀念品4件,B種紀念品3件,需要550元;若購進A種紀念品8件,B種紀念品5件,需要1050元。
(1)求購進A、B兩種紀念品每件各需多少元。
(2)若該農家樂決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該農家樂共有幾種進貨方案。
(3)若銷售每件A種紀念品可獲利潤30元,每件B種紀念品可獲利潤20元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元。
【答案】(1)各需100、50元;(2)四種;(3)購進種紀念品53件,B種紀念品47件時,獲得最大利潤是2530元。
【解析】
(1)關系式為:A種紀念品4件需要錢數(shù)+B種紀念品3件錢數(shù)=550;A種紀念品8件需要錢數(shù)+B種紀念品5件需要錢數(shù)=1050;
(2)關系式為:用于購買這100件紀念品的資金不少于7500元,但不超過7650元,得出不等式組求出即可;
(3)因為A種紀念品利潤較高,故A種數(shù)量越多總利潤越高,因此選擇購A種53件,B種47件.
解:(1)設購進A種紀念品每件需元,購進B種紀念品每件需元,則根據(jù)題意,可列方程組為,解得,則購進A、B兩種紀念品每件各需100、50元。
(2)設購進A種紀念品件,購進B種紀念品件,根據(jù)題意,可列不等式為,解得,因為是正整數(shù),所以故有四種方案。①購進A種紀念品50件,B種紀念品50件;
②購進A種紀念品51件,B種紀念品49件;
③購進A種紀念品52件,B種紀念品48件;
④購進A種紀念品53件,B種紀念品47件.
(3)設利潤為,則,則隨的增大而增大,所以時,最大是2530,故購進種紀念品53件,B種紀念品47件時,獲得最大利潤是2530元。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,矩形OABC的頂點B的坐標為(4,2),D是OA的中點,OE⊥CD交BC于點E,點P從點O出發(fā),以每秒2個單位長度的速度沿射線OE運動.
(1)求直線OE的解析式;
(2)設以C,P,D,B為頂點的凸四邊形的面積為S,點P的運動時間為t(單位:秒),求S關于t的函數(shù)解析式,并寫出自變量t的取值范圍;
(3)設點N為矩形的中心,則在點P運動過程中,是否存在點P,使以P,C,N為頂點的三角形是直角三角形?若存在,請直接寫出t的值及點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品共50件,已知生產一件A種產品用甲種原料9千克,乙種原料3千克,可獲利700元;生產一件B種產品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產品的生產件數(shù),有哪幾種方案?請你設計出來;
(2)設生產A、B兩種產品總利潤為y元,其中一種產品生產件數(shù)為x件,試寫出y與x之間的函數(shù)關系式,并利用函數(shù)的性質說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】威麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進多少件A種商品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為( 。
A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.
(1)求一次函數(shù)y=kx+b和y=的表達式;
(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標;
(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
閱讀理解:數(shù)軸是學習有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點表示,這樣能夠運用數(shù)形結合的方法解決一些問題.例如,兩個有理數(shù)在數(shù)軸上對應的點之間的距離可以用較大數(shù)與較小數(shù)的差來表示.例如:
在數(shù)軸上,有理數(shù)3與1對應的兩點之間的距離為;
在數(shù)軸上,有理數(shù)3與-2對應的兩點之間的距離為;
在數(shù)軸上,有理數(shù)-3與-2對應的兩點之間的距離為.
解決問題:如圖所示,已知點表示的數(shù)為-3,點表示的數(shù)為-1,點表示的數(shù)為2.
(1)點和點之間的距離為______.
(2)若數(shù)軸上動點表示的數(shù)為,當時,點和點之間的距離可表示為______;當時,點和點之間的距離可表示為______.
(3)若數(shù)軸上動點表示的數(shù)為,點在點和點之間,點和點之間的距離表示為,點和點之間的距離表示為,求(用含的代數(shù)式表示并進行化簡)
(4)若數(shù)軸上動點表示的數(shù)為-2,將點向右移動19個單位長度,再向左移動23個單位長度終點為,那么,兩點之間的距離是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下圖的數(shù)陣是由全體奇數(shù)排成:
(1)圖中平行四邊形框內的九個數(shù)之和與中間的數(shù)有什么關系?
(2)在數(shù)陣圖中任意作一類似(1)中的平行四邊形框,這九個數(shù)之和還有這種規(guī)律嗎?請說出理由;
(3)這九個數(shù)之和能等于1998嗎?2005,1017呢?若能,請寫出這九個數(shù)中最小的一個;若不能,請說出理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)()的圖象與軸交于兩點(點在點的左側),與軸交于點,且,,頂點為.
(1)求二次函數(shù)的解析式;
(2)點為線段上的一個動點,過點作軸的垂線,垂足為,若,四邊形的面積為,求關于的函數(shù)解析式,并寫出的取值范圍;
(3)探索:線段上是否存在點,使為直角三角形?如果存在,求出點的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com