8分)如圖已知正六邊形ABCDEF的邊心距為,求這個(gè)正六邊形的半徑R、邊長(zhǎng)a、周長(zhǎng)P和面積S。

 

答案:
解析:

R=4cm,a=4cm,P=24cm,

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)P為
BC
上一動(dòng)點(diǎn),求證:PA=PB+PC.
下面給出一種證明方法,你可以按這一方法補(bǔ)全證明過(guò)程,也可以選擇另外的證明方法.
證明:在AP上截取AE=CP,連接BE
∵△ABC是正三角形
∴AB=CB
∵∠1和∠2的同弧圓周角
∴∠1=∠2
∴△ABE≌△CBP
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P為
BC
上一動(dòng)點(diǎn),求證:PA=PC+
2
PB.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點(diǎn)P為
BC
上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,△ABC為正三角形,點(diǎn)M、N分別在BC、CA邊上,且BM=CN,BN與AM相交于Q點(diǎn),試求∠BQM的度數(shù).
解:∵△ABC為正三角形,∴∠ABC=∠ACB=60°,AB=BC.
在△ABM和△BCN中,
      
.
=
      
.
      
.
=∠
      
.
      
.
=
      
.
?△ABM≌△BCN(
 
).
∴∠
 
=∠
 
,
∴∠BQM=∠
 
+∠
 
=∠
 
+∠
 
=
 
°.
(2)如果將(1)中的正三角形改為正方形ABCD(如圖2),點(diǎn)M、N分別在BC、CD邊上,且BM=CN,BN與AM相交于Q點(diǎn),那么∠BQM等于多少度呢?說(shuō)明理由.
精英家教網(wǎng)
(3)如果將(1)中的“正三角形”改為正五邊形、正六邊形、…、正n邊形(如圖3),其余條件都不變,請(qǐng)你根據(jù)(1)(2)的求解思路,將你推斷的結(jié)論填入下表:(正多邊形的各個(gè)內(nèi)角都相等)
正多邊形 正五邊形 正六邊形 正n邊形
∠BQM的度數(shù)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,是某市公園周圍街巷的示意圖,A點(diǎn)表示1街與2巷的十字路口,B點(diǎn)表示3街與5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A點(diǎn)到B點(diǎn)的一條路徑,那么,你能同樣的方法寫出由A點(diǎn)到B點(diǎn)盡可能近的其他兩條路徑嗎?

(2)從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選兩種正多邊形鑲嵌,請(qǐng)全部寫出這兩種正多邊形.并從其中任選一種探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說(shuō)明你的理由.
(3)如圖2所示,已知AB∥CD,分別探索下列四個(gè)圖形中∠P(均為小于平角的角)與∠A,∠C的關(guān)系,請(qǐng)你從所得的四個(gè)關(guān)系中任選一個(gè)加以說(shuō)明.
(4)閱讀材料:多邊形上或內(nèi)部的一點(diǎn)與多邊形各頂點(diǎn)的連線,將多邊形分割成若干個(gè)小三角形.如圖3給出了四邊形的具體分割方法,分別將四邊形分割成了2個(gè)、3個(gè)、4個(gè)小三角形.
請(qǐng)你按照上述方法將圖4中的六邊形進(jìn)行分割,并寫出得到的小三角形的個(gè)數(shù)以及求出每個(gè)圖形中的六邊形的內(nèi)角和.試把這一結(jié)論推廣至n邊形,并推導(dǎo)出n邊形內(nèi)角和的計(jì)算公式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)已知:如圖1,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)P為數(shù)學(xué)公式上一動(dòng)點(diǎn),求證:PA=PB+PC.
下面給出一種證明方法,你可以按這一方法補(bǔ)全證明過(guò)程,也可以選擇另外的證明方法.
證明:在AP上截取AE=CP,連接BE
∵△ABC是正三角形
∴AB=CB
∵∠1和∠2的同弧圓周角
∴∠1=∠2
∴△ABE≌△CBP
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P為數(shù)學(xué)公式上一動(dòng)點(diǎn),求證:PA=PC+數(shù)學(xué)公式PB.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點(diǎn)P為數(shù)學(xué)公式上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)如圖1,是某市公園周圍街巷的示意圖,A點(diǎn)表示1街與2巷的十字路口,B點(diǎn)表示3街與5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A點(diǎn)到B點(diǎn)的一條路徑,那么,你能同樣的方法寫出由A點(diǎn)到B點(diǎn)盡可能近的其他兩條路徑嗎?

(2)從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選兩種正多邊形鑲嵌,請(qǐng)全部寫出這兩種正多邊形.并從其中任選一種探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說(shuō)明你的理由.
(3)如圖2所示,已知AB∥CD,分別探索下列四個(gè)圖形中∠P(均為小于平角的角)與∠A,∠C的關(guān)系,請(qǐng)你從所得的四個(gè)關(guān)系中任選一個(gè)加以說(shuō)明.
(4)閱讀材料:多邊形上或內(nèi)部的一點(diǎn)與多邊形各頂點(diǎn)的連線,將多邊形分割成若干個(gè)小三角形.如圖3給出了四邊形的具體分割方法,分別將四邊形分割成了2個(gè)、3個(gè)、4個(gè)小三角形.
請(qǐng)你按照上述方法將圖4中的六邊形進(jìn)行分割,并寫出得到的小三角形的個(gè)數(shù)以及求出每個(gè)圖形中的六邊形的內(nèi)角和.試把這一結(jié)論推廣至n邊形,并推導(dǎo)出n邊形內(nèi)角和的計(jì)算公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案