【題目】研究機構對本地區(qū)18-20歲的大學生就某個問題做隨機調查,要求被調查者從A、B、C、D四個選項中選擇自己贊同的一項,并將結果繪制成兩幅不完整的統(tǒng)計圖(如圖):
大學生就某個問題調查結果統(tǒng)計表 | 大學生就某個問題調查結果扇形統(tǒng)計圖 | ||||||||||||
|
請結合圖中信息解答以下問題:
(1)m=_____,b=_____.
(2)若該地區(qū)18~20歲的大學生有1.2萬人,請估計這些大學生中選擇贊同A選項的人數(shù):
(3)該研究機構決定從選擇“C”的人中隨機抽取2名進行訪談,而選擇“C”的這4人中只有一名男性,求這名男性剛好被抽取到的概率.
【答案】(1)40,12;(2)1200;(3)
【解析】
(1)用贊同D的人數(shù)除以對應的百分比即可得到m的值,用總人數(shù)乘以贊同B的人對應的百分比即可得出b值;
(2)用贊同A的人對應的百分比乘以人數(shù),即可得出這些大學生中選擇贊同A選項的人數(shù);
(3)用樹狀圖法列出所有結果,再計算概率,即可得出答案.
(1)m=20÷50%=40,
b=40×30%=12;
(2)a=40-12-4-20=4,
12000×=1200(人),
故若該地區(qū)18~20歲的大學生有1.2萬人,估計這些大學生中選擇贊同A選項的人數(shù)為1200人;
(3)畫樹狀圖如圖所示:
從選“C”的4人中隨機抽取2人,有12種等可能的結果,這名男性被抽取到的結果有6種,
∴這名男性被抽取到的概率為=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A和∠B的平分線交于點P,過點P作PE⊥AB交AB于點E.若BC=5,AC=12,則AE等于______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市平時每天都將一定數(shù)量的白糖和紅糖進行包裝以便出售,已知每天包裝白糖的質量是包裝紅糖質量的倍,且每天包裝白糖和紅糖的質量之和為45千克.
(1)求平均每天包裝白糖和紅糖的質量各是多少千克?
(2)為迎接今年6月25日的“端午節(jié)”,該超市決定在前20天增加每天包裝白糖和紅糖的質量,二者的包裝質量與天數(shù)的變化情況如圖所示,節(jié)日后又恢復到原來每天的包裝質量.直接寫出在這20天內(nèi)每天包裝白糖和紅糖的質量隨天數(shù)變化的函數(shù)關系式,并寫出自變量的取值范圍.
(3)假設該超市每天都會將當天包裝后的白糖和紅糖全部售出,已知白糖的成本價為每千克3.9元,紅糖的成本每千克5.5元,二者包裝費用平均每千克均為0.5元,白糖售價為每千克6元,紅糖售價為每千克8元,那么在這20天中有哪幾天銷售白糖和紅糖的利潤之和大于120元?[總利潤=售價額﹣成本﹣包裝費用].
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在宣傳“民族團結”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學生從中選擇并且只能選擇一種最喜歡的,學校就宣傳形式對學生進行了抽樣調查,并將調查結果繪制了如下兩幅不完整的統(tǒng)計圖.
請結合圖中所給信息,解答下列問題:
(1)本次調查的學生共有_____人;
(2)補全條形統(tǒng)計圖;
(3)該校共有1200名學生,請估計選擇“唱歌”的學生有多少人?
(4)七年一班在最喜歡“器樂”的學生中,有甲、乙、丙、丁四位同學表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學中隨機選出兩名同學參加學校的器樂隊,請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知實數(shù)a、b、c滿足(a-b)2=ab=c,有下列結論:①當c≠0時,=3;②當c=5時,a+b=5:③當a、b、c中有兩個相等時,c=0;④二次函數(shù)y=x2+bx-c與一次函數(shù)y=ax+1的圖象有2個交點.其中正確的有_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“一帶一路”倡議下,我國已成為設施聯(lián)通,貿(mào)易暢通的促進者,同時也帶動了我國與沿線國家的貨物交換的增速發(fā)展,如圖是湘成物流園2016年通過“海、陸(汽車)、空、鐵”四種模式運輸貨物的統(tǒng)計圖.
請根據(jù)統(tǒng)計圖解決下面的問題:
(1)該物流園2016年貨運總量是多少萬噸?
(2)該物流園2016年空運貨物的總量是多少萬噸?并補全條形統(tǒng)計圖;
(3)求條形統(tǒng)計圖中陸運貨物量對應的扇形圓心角的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學拓展課《折疊矩形紙片》上,小林折疊矩形紙片ABCD進行如下操作:①把△ABF翻折,點B落在CD邊上的點E處,折痕AF交BC邊于點F;②把△ADH翻折,點D落在AE邊長的點G處,折痕AH交CD邊于點H.若AD=6,AB=10,則的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD≌△ACE;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,FC之間的數(shù)量關系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y1=ax2﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y2.
(1)求拋物線y2的解析式;
(2)如圖2,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;
(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y2于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com