【題目】計(jì)算與解方程
(1)計(jì)算: tan60°+|﹣3sin30°|﹣cos245°.
(2)解方程:x2+4x+1=0.

【答案】
(1)解:原式= × + =3+1=4;
(2)解:方程變形得:x2+4x=﹣1,

配方得:x2+4x+4=3,即(x+2)2=3,

開方得:x+2=± ,

解得:x1= ﹣2,x2=﹣ ﹣2.


【解析】(1)原式利用特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果;(2)方程利用配方法求出解即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解配方法的相關(guān)知識,掌握左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題,以及對實(shí)數(shù)的運(yùn)算的理解,了解先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運(yùn)算中,要從左到右進(jìn)行運(yùn)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= ,下列結(jié)論中不正確的是( )
A.圖象必經(jīng)過點(diǎn)(1,﹣5)
B.y隨x的增大而增大
C.圖象在第二、四象限內(nèi)
D.若x>1,則﹣5<y<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,點(diǎn)分別在上,且,點(diǎn)分別在上運(yùn)動,則的最小值為______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個交點(diǎn)為A,頂點(diǎn)為P.

(1)求該拋物線的解析式;
(2)連接AC,在x軸上是否存在點(diǎn)Q,使以P、B、Q為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過A點(diǎn)(3,0),二次函數(shù)圖象對稱軸為x=1,給出四個結(jié)論:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正確結(jié)論是( )

A.②④
B.①③
C.②③
D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的圓O經(jīng)過點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°.

(1)判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O半徑為6cm,AE=10cm,求∠ADE的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCA1B1C1關(guān)于直線l對稱,將A1B1C1向右平移得到A2B2C2,由此得出下列判斷:①∠AA2;A1B1A2B2ABA2B2.其中正確的是( )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車去學(xué)校、乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學(xué)同時(shí)從家發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.

1求乙騎自行車的速度;

2當(dāng)甲到達(dá)學(xué)校時(shí),乙同學(xué)離學(xué)校還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)CAB上,△DAC、EBC均是等邊三角形,AE、BD分別與CD、CE交于點(diǎn)M、N,則下列結(jié)論:①AE=DB;CM=CN;③△CMN為等邊三角形;MN//BC;

正確的有_________(填序號)

查看答案和解析>>

同步練習(xí)冊答案