【題目】如圖,P是等邊三角形ABC內(nèi)的一點,連接PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連接CQ.
(1) 觀察并猜想AP與CQ之間的大小關(guān)系,并證明你的結(jié)論;
(2) 若PA:PB:PC=3:4:5,連接PQ,試判斷△PQC的形狀,并說明理由.
【答案】(1)AP=CQ,證明見解析(2)△PQC是直角三角形,證明見解析
【解析】
根據(jù)等邊三角形的性質(zhì)利用SAS判定△ABP≌△CBQ,從而得到AP=CQ;設(shè)PA=3a,PB=4a,PC=5a,由已知可判定△PBQ為正三角形從而可得到PQ=4a,再根據(jù)勾股定理判定△PQC是直角三角形.
(1)猜想:AP=CQ,
證明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,
∴∠ABP=∠QBC.
又AB=BC,BP=BQ,
∴△ABP≌△CBQ,
∴AP=CQ;
(2)由PA:PB:PC=3:4:5,
可設(shè)PA=3a,PB=4a,PC=5a,
連接PQ,在△PBQ中
由于PB=BQ=4a,且∠PBQ=60°,
∴△PBQ為正三角形.
∴PQ=4a.
于是在△PQC中
∵PQ+QC=16a+9a=25a=PC
∴△PQC是直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀:材料1:符號“”稱為二階行列式,規(guī)定它的運算法則為.如.
材料2:我們已經(jīng)學(xué)習(xí)過求解一元一次方程、二元一次方程組、分式方程等方程的解法,雖然各類方程的解法不盡相同,但是蘊含了相同的基本數(shù)學(xué)思想——轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,還可以解一些新的方程.例如,求解部分一元二次方程時,我們可以利用因式分解把它轉(zhuǎn)化為一元一次方程來求解.如解方程:.∵∴.故或.因此原方程的解是,.
根據(jù)材料回答以下問題:
(1)二階行列式___________;二階行列式中的值為__________.
(2)求解中的值.
(3)結(jié)合材料,若,,且,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB交CD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,則∠AOF等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮從家步行到公交站臺,等公交車去學(xué)校.圖中折線表示小亮的行程與所花時間之間的函數(shù)關(guān)系.下列說法:他離家共用了;他等公交車的時間是;他步行的速度是;公交車的速度是.正確的有________________(只填正確說法的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)完二元一次方程組的應(yīng)用之后,老師寫出了一個方程組如下:,要求把這個方程組賦予實際情境.
小軍說出了一個情境:學(xué)校有兩個課外小組,書法組和美術(shù)組,其中書法組的人數(shù)的二倍比美術(shù)組多5人,書法組平均每人完成了4幅書法作品,美術(shù)組平均每人完成了3幅美術(shù)作品,兩個小組共完成了40幅作品,問書法組和美術(shù)組各有多少人?
小明通過驗證后發(fā)現(xiàn)小軍賦予的情境有問題,請找出問題在哪?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊AB上的一動點(不與點A、B重合),連接DE,點A關(guān)于直線DE的對稱點為F,連接EF并延長交BC于點G,連接DG,過點E作EH⊥DE交DG的延長線于點H,連接BH.
(1)求證:GF=GC;
(2)用等式表示線段BH與AE的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com