【題目】如圖,已知菱形ABCD,AB=AC,E,F(xiàn)分別是BC、AD的中點,連接AE、CF.
(1)證明:四邊形AECF是矩形;
(2)若AB=8,求菱形的面積.

【答案】
(1)證明:∵四邊形ABCD是菱形,

∴AB=BC,

又∵AB=AC,

∴△ABC是等邊三角形,

∵E是BC的中點,

∴AE⊥BC(等腰三角形三線合一),

∴∠1=90°,

∵E、F分別是BC、AD的中點,

∴AF= AD,EC= BC,

∵四邊形ABCD是菱形,

∴AD∥BC且AD=BC,

∴AF∥EC且AF=EC,

∴四邊形AECF是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

又∵∠1=90°,

∴四邊形AECF是矩形(有一個角是直角的平行四邊形是矩形);


(2)解:在Rt△ABE中,AE= =4 ,

所以,S菱形ABCD=8×4 =32


【解析】(1)根據(jù)菱形的四條邊都相等可得AB=BC,然后判斷出△ABC是等邊三角形,然后根據(jù)等腰三角形三線合一的性質(zhì)可得AE⊥BC,∠AEC=90°,再根據(jù)菱形的對邊平行且相等以及中點的定義求出AF與EC平行且相等,從而判定出四邊形AECF是平行四邊形,再根據(jù)有一個角是直角的平行四邊形是矩形即可得證;(2)根據(jù)勾股定理求出AE的長度,然后利用菱形的面積等于底乘以高計算即可得解.
【考點精析】本題主要考查了勾股定理的概念和菱形的性質(zhì)的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點M(-3,2)分別作x軸、y軸的垂線與反比例函數(shù)y=的圖象交于AB兩點,則四邊形MAOB的面積為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與拋物線相交于AB(4,n),點P直線AB上不同于A、B的動點,過點PPCx軸于點D,交拋物線于點C.設(shè)P點的橫坐標為m

(1)直接寫出點B坐標;

(2)求拋物線的解析式;

(3)請用含m的代數(shù)式表示線段PC的長;

(4)若點P在線段AB上移動,請直接寫出PAC為直角三角形時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列函數(shù)的圖像在每一個象限內(nèi), 值隨值的增大而增大的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,下列說法中錯誤的是(
A.∵∠A+∠ADC=180°,∴AB∥CD
B.∵AB∥CD,∴∠ABC+∠C=180°
C.∵∠1=∠2,∴AD∥BC
D.∵AD∥BC,∴∠3=∠4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】PM2.5是指每立方米大氣中直徑小于或等于0.000 0025米的顆粒粉塵,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對人體健康和大氣環(huán)境質(zhì)量有很大危害,將0.000 0025米用科學記數(shù)法表示為___________米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某彈簧的長度與所掛物體質(zhì)量之間的關(guān)系如下表:

所掛物體的質(zhì)量/千克

0

1

2

3

4

5

彈簧的長度/厘米

10

10.4

10.8

11.2

11.6

12


(1)如果所掛物體的質(zhì)量用x表示,彈簧的長度用y表示,請直接寫出y與x滿足的關(guān)系式.
(2)當所掛物體的質(zhì)量為10千克時,彈簧的長度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式(組)
(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在數(shù)軸上表示出來.
(2) ,并寫出不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】太陽的半徑約為696000千米,用科學記數(shù)法可表示為(
A.6.96×103千米
B.6.96×104千米
C.6.96×105千米
D.6.96×106千米

查看答案和解析>>

同步練習冊答案