精英家教網 > 初中數學 > 題目詳情

矩形OABC的頂點A(-8,0)、C(0,6) ,點D是BC邊上的中點,拋物線經過A、D兩點,如圖所示.

1.求點D關于y軸的對稱點的坐標及a、b的值;

 2.在y軸上取一點P, 使PA+PD長度最短, 求點P的坐標;

 3.將拋物線向下平移,記平移后點A的對應點為,點D的對應點為,當拋物線平移到某個位置時,恰好使得點O是y軸上到兩點距離之和最短的一點,求此拋物線的解析式.

 

 

1.(1)由矩形的性質可知:B(-8,6)

∴D(-4,6); 點D關于y軸對稱點D′(4,6)

將A(-8,0)、D(-4,6)代入,得:

;     

2.設直線AD′的解析式為,則:

    ∴     解得:      

∴直線與y軸交于點(0,4),所以點P(0,4)

3.解法1:由于OP=4,故將拋物線向下平移4個單位時,有OA1+OD1最短;

      ∴  ,即此時的解析式為;

解法2:設拋物線向下平移了m個單位,則A1(-8,-m),D1(-4,6-m),

令直線;

∵點O為使OA1+OD1最短的點,∴ ∴m=4,

即將拋物線向下平移了4個單位;

 ,即此時的解析式為.

解析:略

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在直角坐標系中,矩形OABC的頂點B的坐標為(15,6),直線y=
13
x+b
恰好將矩形OABC分成面積相等的兩部分,那么b=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,矩形OABC的頂點O為原點,E為AB上一點,把△CBE沿CE折疊,使點B恰好落在OA邊上的點D處,點A,D的坐標分別為(5,0)和(3,0).
(1)求點C的坐標;
(2)求DE所在直線的解析式;
(3)設過點C的拋物線y=2x2+
3
bx+c(b<0)與直線BC的另一個交點為M,問在該拋物線精英家教網上是否存在點G,使得△CMG為等邊三角形?若存在,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數y=-
16
x2+bx+c
的圖象經過點A(0,6),B(8,6),矩形OABC的頂點C精英家教網在x軸上,動點P從點C出發(fā)沿折線C→B→A運動,到達點A時停止,設點P運動的路程為m(0<m<14).
(1)求b,c的值;
(2)設直線OP在運動過程中掃過矩形的面積為S,求S關于m的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x軸、y軸上,且與雙精英家教網曲線y=
kx
交于M、N兩點,N為AB的中點,連接OM、ON、OB.
(1)若OA=3,AB=4,試求出反比例函數的關系式及M的坐標;
(2)請比較△OBN與△OBM的面積大小,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•東營)如圖,在直角坐標系中,矩形OABC的頂點O在坐標原點,邊OA在x軸上,OC在y軸上,如果矩形OA′B′C′與矩形OABC關于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的
1
4
,那么點B′的坐標是(  )

查看答案和解析>>

同步練習冊答案