【題目】如圖,已知數(shù)軸上的點(diǎn)A對(duì)應(yīng)的數(shù)為6,B是數(shù)軸上的一點(diǎn),且AB=10,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿著數(shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是_______,點(diǎn)P對(duì)應(yīng)的數(shù)是_______(用t的式子表示);
(2)動(dòng)點(diǎn)Q從點(diǎn)B與點(diǎn)P同時(shí)出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿著數(shù)軸向左勻速運(yùn)動(dòng),試問(wèn):運(yùn)動(dòng)多少時(shí)間點(diǎn)P可以追上點(diǎn)Q?
(3)M是AP的中點(diǎn),N是PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線(xiàn)段MN的長(zhǎng)度是否發(fā)生變化?若有變化,說(shuō)明理由;若沒(méi)有變化,請(qǐng)你畫(huà)出圖形,并求出MN的長(zhǎng).
【答案】(1)-4,6-6t (2)5秒 (3)線(xiàn)段MN的長(zhǎng)度不發(fā)生變化,MN=5
【解析】
(1)根據(jù)點(diǎn)A對(duì)應(yīng)的數(shù)為6,B是數(shù)軸上的一點(diǎn),且AB=10,可得B點(diǎn)表示的數(shù)為6-10=-4;點(diǎn)P表示的數(shù)為6-6t;
(2)點(diǎn)P運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)Q,然后建立方程6x-4x=10,解方程即可;
(3)分類(lèi)討論:①當(dāng)點(diǎn)P在點(diǎn)A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),②當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí),利用中點(diǎn)的定義和線(xiàn)段的和差易求出MN.
(1)由題可得,
B點(diǎn)表示的數(shù)為6-10=-4;
點(diǎn)P表示的數(shù)為6-6t;
故答案為:-4,6-6t;
(2)設(shè)點(diǎn)P運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)Q(如圖),則AC=6x,BC=4x,
∵AC-BC=AB,
∴6x-4x=10,
解得:x=5,
∴點(diǎn)P運(yùn)動(dòng)5秒時(shí),在點(diǎn)C處追上點(diǎn)Q;
(3)線(xiàn)段MN的長(zhǎng)度不發(fā)生變化,等于5.
理由如下:
分兩種情況:
①當(dāng)點(diǎn)P在點(diǎn)A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí):
MN=MP+NP=AP+BP=(AP+BP)=AB=5;
②當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí):
MN=MP-NP=AP-BP=(AP-BP)=AB=5,
∴綜上所述,線(xiàn)段MN的長(zhǎng)度不發(fā)生變化,其值為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,分別探討下面四個(gè)圖形中∠APC與∠PAB、∠PCD的關(guān)系,請(qǐng)你從所得到的關(guān)系中任選一個(gè)加以說(shuō)明。(適當(dāng)添加輔助線(xiàn),其實(shí)并不難)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,表示數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)與原點(diǎn)的距離.如:表示在數(shù)軸上的對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離.而,即表示和在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離.類(lèi)似的,有:表示和在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;,所以表示和在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離.一般地,點(diǎn)在數(shù)軸上分別表示數(shù)和,那么點(diǎn)和之間的距離可表示為.
利用以上知識(shí):
(1)求代數(shù)式的最小值 .
(2)求代數(shù)式的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀(guān)察下列計(jì)算1+2+22+23+…+224+225的解題過(guò)程(主要步驟)。
解:設(shè)a=1+2+22+23+…+224+225,
則2a=2+22+23+…+224+225+226,
2a-a=(2+22+23+…+224+225+226)-( 1+2+22+23+…+224+225)=226-1.
所以a=226-1.
通過(guò)閱讀,你一定學(xué)到了一種解決問(wèn)題的方法。請(qǐng)你用此方法解決下列問(wèn)題:
(1)計(jì)算:1+5+52+53+…+52016+52017的值.
(2)計(jì)算:72+73+…+7n-1+7n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知⊙O的半徑是4,△ABC內(nèi)接于⊙O,AC=.
①求∠ABC的度數(shù);
②已知AP是⊙O的切線(xiàn),且AP=4,連接PC.判斷直線(xiàn)PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)如圖2,已知ABCD的頂點(diǎn)A、B、D在⊙O上,頂點(diǎn)C在⊙O內(nèi),延長(zhǎng)BC交⊙O于點(diǎn)E,連接DE.求證:DE=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=y(tǒng)1+y2,y1與x成正比例,y2與x-2成正比例,當(dāng)x=1時(shí),y=0;當(dāng)x=-3時(shí),y=4.
(1)求y與x的函數(shù)關(guān)系式,并說(shuō)明此函數(shù)是什么函數(shù);
(2)當(dāng)x=3時(shí),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a、b、c在數(shù)軸上的位置如圖:
(1)用不等號(hào)填空:-b 0,|c| 0,|a| |b|,b-c 0,a+b 0,c-a 0.
(2)化簡(jiǎn):
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖1,拋物線(xiàn)y=ax2+bx+3與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)A,且AO=CO,BC=4.
(1)求拋物線(xiàn)解析式;
(2)如圖2,點(diǎn)P是拋物線(xiàn)第一象限上一點(diǎn),連接PB交y軸于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為t,線(xiàn)段OQ長(zhǎng)為d,求d與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,過(guò)點(diǎn)Q作直線(xiàn)l⊥y軸,在l上取一點(diǎn)M(點(diǎn)M在第二象限),連接AM,使AM=PQ,連接CP并延長(zhǎng)CP交y軸于點(diǎn)K,過(guò)點(diǎn)P作PN⊥l于點(diǎn)N,連接KN、CN、CM.若∠MCN+∠NKQ=45°時(shí),求t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D、E分別在△ABC的邊AC和BC上,∠C=90°,DE∥AB,且3DE=2AB,AE=13,BD=9,那么AB的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com