作業(yè)寶如圖,△ABC中,AD⊥BC于點(diǎn)D,AD=BD,∠C=65°,求∠BAC的度數(shù).

解:∵△ABC中,AD⊥BC于點(diǎn)D,AD=BD,
∴∠BAD=45°,
∵∠C=65°,
∴∠CAD=90°-65°=25°,
∴∠BAC=∠BAD+∠CAD=45°+25°=70°.
分析:先根據(jù)△ABC中,AD⊥BC于點(diǎn)D,AD=BD求出∠BAD的度數(shù),再由∠C=65°求出∠CAD的度數(shù),進(jìn)而可得出結(jié)論.
點(diǎn)評:本題考查的是等腰直角三角形,熟知兩條直角邊相等的直角三角形叫做等腰直角三角形是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案