【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2﹣bx+c經(jīng)過(guò)A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)則b= , c=;
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過(guò)點(diǎn)C,求平移后所得拋物線的表達(dá)式.
【答案】
(1)4;3
(2)解:∵A(0,3),B(1,0),
∴OA=3,OB=1.
∴旋轉(zhuǎn)后C點(diǎn)的坐標(biāo)為(4,1).
當(dāng)x=4時(shí),y=x2﹣4x+3=42﹣4×4+3=3,
∴拋物線y=x2﹣4x+3經(jīng)過(guò)點(diǎn)(4,3).
∴將原拋物線沿y軸向下平移2個(gè)單位后過(guò)點(diǎn)C.
∴平移后的拋物線解析式為y=x2﹣4x+1
【解析】解:(1)已知拋物線y=x2﹣bx+c經(jīng)過(guò)A(0,3),B(1,0)兩點(diǎn),∴ 解得: ,∴b、c的值分別為4,3.故答案是:4;3.
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象的平移的相關(guān)知識(shí)點(diǎn),需要掌握平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對(duì)x軸左加右減;對(duì)y軸上加下減才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC中,∠BAC=78°,AB=AC,P為△ABC內(nèi)一點(diǎn),連BP,CP,使∠PBC=9°,∠PCB=30°,連PA,則∠BAP的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市自來(lái)水公司為鼓勵(lì)居民節(jié)約用水,采取按月用水量分段收費(fèi)辦法,若某戶(hù)居民應(yīng)交交費(fèi)(元)與用水量(噸)的函數(shù)關(guān)系如圖所示。
(1)分別寫(xiě)出當(dāng)和時(shí),與的函數(shù)關(guān)系式;
(2)若某用戶(hù)該月用水21噸,則應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC 中,AB=AC,∠BAC=90°,D 是BC 上一點(diǎn),EC⊥BC,EC=BD,DF=FE.
求證:(1)△ABD≌△ACE;
(2)AF⊥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+2x﹣3經(jīng)過(guò)點(diǎn)(1,3)
(1)求a的值;
(2)當(dāng)x=3時(shí),求y的值;
(3)求這個(gè)拋物線的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),直線l:y=x,點(diǎn)A1坐標(biāo)為(4,0),過(guò)點(diǎn)A1作x軸的垂線交直線l于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸正半軸于點(diǎn)A2,再過(guò)點(diǎn)A2作x軸的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2為半徑畫(huà)弧交x軸正半軸于點(diǎn)A3……按此做法進(jìn)行下去,點(diǎn)A2 017的橫坐標(biāo)為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB:y=﹣x﹣b分別與x,y軸交于A(6,0)、B兩點(diǎn),過(guò)點(diǎn)B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線BC的解析式;
(3)直線EF:y=2x﹣k(k≠0)交AB于E,交BC于點(diǎn)F,交x軸于點(diǎn)D,是否存在這樣的直線EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=4km , 某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測(cè)站O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離(即AB的長(zhǎng))為km .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com