【題目】某區(qū)為治理污水,需要鋪設(shè)一段全長為 720 米的污水排放管道.“…”.設(shè)原計劃每天鋪設(shè) x 米,可以列出方程,根據(jù)情景及所列方程,題中用“…”表示的缺失條件應(yīng)補為( )
A.實際施工時每天的工作效率比原計劃高 20%,結(jié)果提前 2 天完成任務(wù);
B.原計劃每天的工作效率比實際施工時低 20%,結(jié)果提前 2 天完成任務(wù);
C.實際施工時每天的工作效率比原計劃高 20%,結(jié)果延后 2 天完成任務(wù);
D.原計劃每天的工作效率比實際施工時低 20%,結(jié)果延后 2 天完成任務(wù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上的A、B兩點分別對應(yīng)數(shù)字a、b,且a、b滿足|4a-b|+(a-4)2=0
(1)a= ,b= ,并在數(shù)軸上面出A、B兩點;
(2)若點P從點A出發(fā),以每秒3個單位長度向x軸正半軸運動,求運動時間為多少時,點P到點A的距離是點P到點B距離的2倍;
(3)數(shù)軸上還有一點C的坐標為30,若點P和點Q同時從點A和點B出發(fā),分別以每秒3個單位長度和每秒1個單位長度的速度向C點運動,P點到達C點后,再立刻以同樣的速度返回,運動到終點A.求點P和點Q運動多少秒時,P、Q兩點之間的距離為4,并求此時點Q對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,∠A=60°,點E、F分別在邊AD、DC上,DE=DF,且∠EBF=60°.若AE=2,FC=3,則EF的長度為( 。
A. B. C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在上學(xué)的路上要經(jīng)過多個路口,每個路口都設(shè)有紅、黃、綠三種信號燈,假設(shè)在各路口遇到信號燈是相互獨立的.
(1).如果有2個路口,求小明在上學(xué)路上到第二個路口時第一次遇到紅燈的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
(2).如果有n個路口,則小明在每個路口都沒有遇到紅燈的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解全校學(xué)生到校上學(xué)的方式,在全校隨機抽取了若干名學(xué)生進行問卷調(diào)查.問卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項,且不能不選.同時把調(diào)查得到的結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)通過計算補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“公交車”部分所對應(yīng)的圓心角是多少度?
(4)若全校有1600名學(xué)生,估計該校乘坐私家車上學(xué)的學(xué)生約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將邊長為 a 、b 的正方形 ABCD 按圖 ① 中的比例進行分割,可以拼成一個長方形A1 B1C1D1 不重疊、無縫隙),如圖②所示.
(1)根據(jù)圖①可以拼成圖②的面積關(guān)系,請寫出 a 、b 之間存在的關(guān)系式;
(2)已知圖③中,四邊形 QMNG 與四邊形EFGH 分別是以 a 、b 長為邊的正方形與圖①中的 a 、b 相同),在圖 3 已有的四邊形中,面積相等的四邊形有幾組?請分別寫出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)測驗后,王老師把某一小組10名同學(xué)的成績以平均成績?yōu)榛鶞,并以高于平均成績記?/span>“+”,分別記為+10分,-5分,0分,+8分,-3分,+6分,-5分,-3分,+4分,-12分,通過計算知道這10名同學(xué)的平均成績是82分.
(1)這一小組成績最高分與最低分相差多少分?
(2)如果成績不低于80分為優(yōu)秀,那么這10名同學(xué)在這次數(shù)學(xué)測驗中優(yōu)秀率是百分之幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種對正整數(shù)n的“F”運算:①當n為奇數(shù)時,F(n)=3n+1;②當n為偶數(shù)時,F(n)(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運算交替重復(fù)進行,例如,取n=13,則:若n=24,則第100次“F”運算的結(jié)果是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:將邊長為的正三角形的三條邊分別等分,連接各邊對應(yīng)的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?
探究:要研究上面的問題,我們不妨先從最簡單的情形入手,進而找到一般性規(guī)律.
探究一:將邊長為2的正三角形的三條邊分別二等分,連接各邊中點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?
如圖①,連接邊長為2的正三角形三條邊的中點,從上往下看:
邊長為1的正三角形,第一層有1個,第二層有3個,共有個;
邊長為2的正三角形一共有1個.
探究二:將邊長為3的正三角形的三條邊分別三等分,連接各邊對應(yīng)的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?
如圖②,連接邊長為3的正三角形三條邊的對應(yīng)三等分點,從上往下看:邊長為1的正三角形,第一層有1個,第二層有3個,第三層有5個,共有個;邊長為2的正三角形共有個.
探究三:將邊長為4的正三角形的三條邊分別四等分(圖③),連接各邊對應(yīng)的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?
(仿照上述方法,寫出探究過程)
結(jié)論:將邊長為的正三角形的三條邊分別等分,連接各邊對應(yīng)的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?
(仿照上述方法,寫出探究過程)
應(yīng)用:將一個邊長為25的正三角形的三條邊分別25等分,連接各邊對應(yīng)的等分點,則該三角形中邊長為1的正三角形有______個和邊長為2的正三角形有______個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com