(1999•河北)證明梯形中位線定理:已知:如圖,在梯形ABCD中,AD∥BC,AM=MB,DN=NC.
求證:MN∥BC,MN=(BC+AD).

【答案】分析:連接AN并延長,交BC的延長線于點(diǎn)E,先根據(jù)平行線的性質(zhì)求出△ADN≌△ECN,求出MN是△ABE的中位線,再根據(jù)三角形的中位線定理解答即可.
解答:證明:連接AN并延長,交BC的延長線于點(diǎn)E,(1分)
∵∠1=∠2,DN=NC,∠D=∠3,
∴△ADN≌△ECN,(3分)
∴AN=EN,AD=EC,(4分)
又∵AM=MB,
∴MN是△ABE的中位線,
∴MN∥BC,MN=BE,(6分)
∵BE=BC+EC=BC+AD,
∴MN=(BE+AD).(8分)
點(diǎn)評(píng):本題考查的是梯形及三角形的中位線定理,解答此題的關(guān)鍵是作出輔助線,通過三角形的中位線定理求證梯形的中位線定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•河北)如圖,正方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),且OA和AB邊所在的直線的解析式分別為:y=x和y=-x+.D、E分別為邊OC和AB的中點(diǎn),P為OA邊上一動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)O不重合),連接DE和CP,其交點(diǎn)為Q.
(1)求證:點(diǎn)Q為△COP的外心;
(2)求正方形OABC的邊長;
(3)當(dāng)⊙Q與AB相切時(shí),求點(diǎn)P的坐標(biāo).


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年河北省中考數(shù)學(xué)試卷 題型:解答題

(1999•河北)如圖,這是某市一處十字路口立交橋的橫斷面在平面直角坐標(biāo)系中的示意圖,橫斷面的地平線為x軸,橫斷面的對(duì)稱軸為y軸.橋拱的DGD′部分為一段拋物線,頂點(diǎn)G的高度為8米,AD和A′D′的兩側(cè)高為5.5米的支柱,OA和OA′為兩個(gè)方向的汽車通行區(qū),寬都為15米,線段CD和C′D′為兩段對(duì)稱的上橋斜坡,其坡度為1:4.
(1)求橋拱DGD′所在拋物線的解析式及CC′的長;
(2)BE和B′E′為支撐斜坡的立柱,其高都為4米,相應(yīng)的AB和A′B′為兩個(gè)方向的行人及非機(jī)動(dòng)車通行區(qū).試求AB和A′B′的寬;
(3)按規(guī)定,汽車通過該橋下時(shí),載貨最高處和橋拱之間的距離不得小于0.4米.今有一大型運(yùn)貨汽車,裝載某大型設(shè)備后,其寬為4米,車載大型設(shè)備的頂部與地面的距離均為7米.它能否從OA(或OA′)區(qū)域安全通過?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《四邊形》(03)(解析版) 題型:解答題

(1999•河北)證明梯形中位線定理:已知:如圖,在梯形ABCD中,AD∥BC,AM=MB,DN=NC.
求證:MN∥BC,MN=(BC+AD).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年河北省中考數(shù)學(xué)試卷 題型:解答題

(1999•河北)證明梯形中位線定理:已知:如圖,在梯形ABCD中,AD∥BC,AM=MB,DN=NC.
求證:MN∥BC,MN=(BC+AD).

查看答案和解析>>

同步練習(xí)冊(cè)答案